Proving Polynomial is a subspace of a vector space
up vote
0
down vote
favorite
$W={f(x)in P(mathbb R) colon f(x)=0 text{ or } f(x)text{ has degree }5}$, $V=P(mathbb R)$
I'm really stuck on proving this question. I know that the first axioms stating that $0$ must be an element of $W$ is held, however I'm not sure how to prove closure under addition or scalar.
I've tried using arbitrary polynomials $a$, $b$ and letting them be an element of $W$. I then have:
$$ax^5+bx^5=(a+b)x^5$$
And I'm not sure how to prove that this addition is an element of W. I know intuitively it makes sense that it's an element of W, but I'm just not sure how to proof it mathematically.
Any help would be greatly appreciated!
linear-algebra
add a comment |
up vote
0
down vote
favorite
$W={f(x)in P(mathbb R) colon f(x)=0 text{ or } f(x)text{ has degree }5}$, $V=P(mathbb R)$
I'm really stuck on proving this question. I know that the first axioms stating that $0$ must be an element of $W$ is held, however I'm not sure how to prove closure under addition or scalar.
I've tried using arbitrary polynomials $a$, $b$ and letting them be an element of $W$. I then have:
$$ax^5+bx^5=(a+b)x^5$$
And I'm not sure how to prove that this addition is an element of W. I know intuitively it makes sense that it's an element of W, but I'm just not sure how to proof it mathematically.
Any help would be greatly appreciated!
linear-algebra
1
$x^5$ is not a general polynomial of degree 5. A general polynomial of degree 5 will contain $x^i$ terms where $i le 4$ besides a mandatory $ax^5$ term where $a$ is not $0$
– Shailesh
Feb 5 '16 at 4:13
The phrase "proving this question" doesn't quite make sense. Questions should be answered. Theorems, claims, and the likes are to be proved. And this is not just being picky with words. While it's still an open question, are you sure you want to prove or to disprove the claim that this $W$ is a subspace? Proving something that's not even true would be such a waste of time and effort...
– zipirovich
Nov 25 '16 at 6:04
Some MSE users tried to improve your post using TeX (for better readability). Please check whether these edits did not unintentionally change the meaning of your post. For some basic information about writing math at this site see e.g. here, here, here and here.
– Martin Sleziak
Nov 25 '16 at 6:20
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$W={f(x)in P(mathbb R) colon f(x)=0 text{ or } f(x)text{ has degree }5}$, $V=P(mathbb R)$
I'm really stuck on proving this question. I know that the first axioms stating that $0$ must be an element of $W$ is held, however I'm not sure how to prove closure under addition or scalar.
I've tried using arbitrary polynomials $a$, $b$ and letting them be an element of $W$. I then have:
$$ax^5+bx^5=(a+b)x^5$$
And I'm not sure how to prove that this addition is an element of W. I know intuitively it makes sense that it's an element of W, but I'm just not sure how to proof it mathematically.
Any help would be greatly appreciated!
linear-algebra
$W={f(x)in P(mathbb R) colon f(x)=0 text{ or } f(x)text{ has degree }5}$, $V=P(mathbb R)$
I'm really stuck on proving this question. I know that the first axioms stating that $0$ must be an element of $W$ is held, however I'm not sure how to prove closure under addition or scalar.
I've tried using arbitrary polynomials $a$, $b$ and letting them be an element of $W$. I then have:
$$ax^5+bx^5=(a+b)x^5$$
And I'm not sure how to prove that this addition is an element of W. I know intuitively it makes sense that it's an element of W, but I'm just not sure how to proof it mathematically.
Any help would be greatly appreciated!
linear-algebra
linear-algebra
edited Nov 25 '16 at 6:20
Martin Sleziak
44.5k7115268
44.5k7115268
asked Feb 5 '16 at 4:07
Nikitau L
112
112
1
$x^5$ is not a general polynomial of degree 5. A general polynomial of degree 5 will contain $x^i$ terms where $i le 4$ besides a mandatory $ax^5$ term where $a$ is not $0$
– Shailesh
Feb 5 '16 at 4:13
The phrase "proving this question" doesn't quite make sense. Questions should be answered. Theorems, claims, and the likes are to be proved. And this is not just being picky with words. While it's still an open question, are you sure you want to prove or to disprove the claim that this $W$ is a subspace? Proving something that's not even true would be such a waste of time and effort...
– zipirovich
Nov 25 '16 at 6:04
Some MSE users tried to improve your post using TeX (for better readability). Please check whether these edits did not unintentionally change the meaning of your post. For some basic information about writing math at this site see e.g. here, here, here and here.
– Martin Sleziak
Nov 25 '16 at 6:20
add a comment |
1
$x^5$ is not a general polynomial of degree 5. A general polynomial of degree 5 will contain $x^i$ terms where $i le 4$ besides a mandatory $ax^5$ term where $a$ is not $0$
– Shailesh
Feb 5 '16 at 4:13
The phrase "proving this question" doesn't quite make sense. Questions should be answered. Theorems, claims, and the likes are to be proved. And this is not just being picky with words. While it's still an open question, are you sure you want to prove or to disprove the claim that this $W$ is a subspace? Proving something that's not even true would be such a waste of time and effort...
– zipirovich
Nov 25 '16 at 6:04
Some MSE users tried to improve your post using TeX (for better readability). Please check whether these edits did not unintentionally change the meaning of your post. For some basic information about writing math at this site see e.g. here, here, here and here.
– Martin Sleziak
Nov 25 '16 at 6:20
1
1
$x^5$ is not a general polynomial of degree 5. A general polynomial of degree 5 will contain $x^i$ terms where $i le 4$ besides a mandatory $ax^5$ term where $a$ is not $0$
– Shailesh
Feb 5 '16 at 4:13
$x^5$ is not a general polynomial of degree 5. A general polynomial of degree 5 will contain $x^i$ terms where $i le 4$ besides a mandatory $ax^5$ term where $a$ is not $0$
– Shailesh
Feb 5 '16 at 4:13
The phrase "proving this question" doesn't quite make sense. Questions should be answered. Theorems, claims, and the likes are to be proved. And this is not just being picky with words. While it's still an open question, are you sure you want to prove or to disprove the claim that this $W$ is a subspace? Proving something that's not even true would be such a waste of time and effort...
– zipirovich
Nov 25 '16 at 6:04
The phrase "proving this question" doesn't quite make sense. Questions should be answered. Theorems, claims, and the likes are to be proved. And this is not just being picky with words. While it's still an open question, are you sure you want to prove or to disprove the claim that this $W$ is a subspace? Proving something that's not even true would be such a waste of time and effort...
– zipirovich
Nov 25 '16 at 6:04
Some MSE users tried to improve your post using TeX (for better readability). Please check whether these edits did not unintentionally change the meaning of your post. For some basic information about writing math at this site see e.g. here, here, here and here.
– Martin Sleziak
Nov 25 '16 at 6:20
Some MSE users tried to improve your post using TeX (for better readability). Please check whether these edits did not unintentionally change the meaning of your post. For some basic information about writing math at this site see e.g. here, here, here and here.
– Martin Sleziak
Nov 25 '16 at 6:20
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
To be a vector (sub)space $V$, you have to check that $f,g in V$ implies that $af + bg in V$ for all $a,b in Bbb R$. Notice that all polynomials of degree five or fewer take the form $a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, where $a_i in Bbb R$ and that addition of polynomials is done componentwise.
Edit: Notice that you've shown that IF you add two polynomials off degree less five, what you get back is a polynomial of degree less or equal to five. Since you've already noted that $0$ is in your space, all you have to do is show that multiplying by a real number gives a polynomial of degree less than or equal to five. By showing this for any two fixed polynomials, you show this for any polynomials.
Second edit: Don't forget your constant terms; they are important. Remember your goal when proving something is a vector space is to say "IF I add two elements that I know are in the space together, they give me a third element also in the space."
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
To be a vector (sub)space $V$, you have to check that $f,g in V$ implies that $af + bg in V$ for all $a,b in Bbb R$. Notice that all polynomials of degree five or fewer take the form $a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, where $a_i in Bbb R$ and that addition of polynomials is done componentwise.
Edit: Notice that you've shown that IF you add two polynomials off degree less five, what you get back is a polynomial of degree less or equal to five. Since you've already noted that $0$ is in your space, all you have to do is show that multiplying by a real number gives a polynomial of degree less than or equal to five. By showing this for any two fixed polynomials, you show this for any polynomials.
Second edit: Don't forget your constant terms; they are important. Remember your goal when proving something is a vector space is to say "IF I add two elements that I know are in the space together, they give me a third element also in the space."
add a comment |
up vote
0
down vote
To be a vector (sub)space $V$, you have to check that $f,g in V$ implies that $af + bg in V$ for all $a,b in Bbb R$. Notice that all polynomials of degree five or fewer take the form $a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, where $a_i in Bbb R$ and that addition of polynomials is done componentwise.
Edit: Notice that you've shown that IF you add two polynomials off degree less five, what you get back is a polynomial of degree less or equal to five. Since you've already noted that $0$ is in your space, all you have to do is show that multiplying by a real number gives a polynomial of degree less than or equal to five. By showing this for any two fixed polynomials, you show this for any polynomials.
Second edit: Don't forget your constant terms; they are important. Remember your goal when proving something is a vector space is to say "IF I add two elements that I know are in the space together, they give me a third element also in the space."
add a comment |
up vote
0
down vote
up vote
0
down vote
To be a vector (sub)space $V$, you have to check that $f,g in V$ implies that $af + bg in V$ for all $a,b in Bbb R$. Notice that all polynomials of degree five or fewer take the form $a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, where $a_i in Bbb R$ and that addition of polynomials is done componentwise.
Edit: Notice that you've shown that IF you add two polynomials off degree less five, what you get back is a polynomial of degree less or equal to five. Since you've already noted that $0$ is in your space, all you have to do is show that multiplying by a real number gives a polynomial of degree less than or equal to five. By showing this for any two fixed polynomials, you show this for any polynomials.
Second edit: Don't forget your constant terms; they are important. Remember your goal when proving something is a vector space is to say "IF I add two elements that I know are in the space together, they give me a third element also in the space."
To be a vector (sub)space $V$, you have to check that $f,g in V$ implies that $af + bg in V$ for all $a,b in Bbb R$. Notice that all polynomials of degree five or fewer take the form $a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, where $a_i in Bbb R$ and that addition of polynomials is done componentwise.
Edit: Notice that you've shown that IF you add two polynomials off degree less five, what you get back is a polynomial of degree less or equal to five. Since you've already noted that $0$ is in your space, all you have to do is show that multiplying by a real number gives a polynomial of degree less than or equal to five. By showing this for any two fixed polynomials, you show this for any polynomials.
Second edit: Don't forget your constant terms; they are important. Remember your goal when proving something is a vector space is to say "IF I add two elements that I know are in the space together, they give me a third element also in the space."
edited Feb 5 '16 at 4:25
answered Feb 5 '16 at 4:20
RandomWalker
1179
1179
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1641335%2fproving-polynomial-is-a-subspace-of-a-vector-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$x^5$ is not a general polynomial of degree 5. A general polynomial of degree 5 will contain $x^i$ terms where $i le 4$ besides a mandatory $ax^5$ term where $a$ is not $0$
– Shailesh
Feb 5 '16 at 4:13
The phrase "proving this question" doesn't quite make sense. Questions should be answered. Theorems, claims, and the likes are to be proved. And this is not just being picky with words. While it's still an open question, are you sure you want to prove or to disprove the claim that this $W$ is a subspace? Proving something that's not even true would be such a waste of time and effort...
– zipirovich
Nov 25 '16 at 6:04
Some MSE users tried to improve your post using TeX (for better readability). Please check whether these edits did not unintentionally change the meaning of your post. For some basic information about writing math at this site see e.g. here, here, here and here.
– Martin Sleziak
Nov 25 '16 at 6:20