Calculate limit os sequence.











up vote
0
down vote

favorite












Suppose $p_i >0 ~(i=1,2,ldots)$ and $lim_{n to infty}{frac{p_n}{p_1+p_2+...+p_n}}=0$ and $lim_{n to infty}{a_n}=a$ prove that $$lim_{n to infty}{frac{p_1a_n+p_2a_{n-1}+...+p_n a_1}{p_1+p_2+...+p_n}}=a.$$



Now proof attempt:
$|a_n|$ is bounded as it converges. So:
$$left|frac{p_1a_n+p_2a_{n-1}+...+p_n a_1}{p_1+p_2+...+p_n}-aright|=left|frac{p_1(a_n-a)+p_2(a_{n-1}-a)+...+p_n (a_1-a)}{p_1+p_2+...+p_n}right| leq \
leq frac{|p_1(a_n-a)|+|p_2(a_{n-1}-a)|+...+|p_n (a_1-a)|}{p_1+p_2+...+p_n},$$

and for some $N$ and $M$ we have:
$$frac{|p_1(a_n-a)|+|p_2(a_{n-1}-a)|+...+|p_{n-N} (a_{N+1}-a)|+p_{n-N+1}M+...+p_nM}{p_1+p_2+...+p_n}.$$
So now what do I do?










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    Suppose $p_i >0 ~(i=1,2,ldots)$ and $lim_{n to infty}{frac{p_n}{p_1+p_2+...+p_n}}=0$ and $lim_{n to infty}{a_n}=a$ prove that $$lim_{n to infty}{frac{p_1a_n+p_2a_{n-1}+...+p_n a_1}{p_1+p_2+...+p_n}}=a.$$



    Now proof attempt:
    $|a_n|$ is bounded as it converges. So:
    $$left|frac{p_1a_n+p_2a_{n-1}+...+p_n a_1}{p_1+p_2+...+p_n}-aright|=left|frac{p_1(a_n-a)+p_2(a_{n-1}-a)+...+p_n (a_1-a)}{p_1+p_2+...+p_n}right| leq \
    leq frac{|p_1(a_n-a)|+|p_2(a_{n-1}-a)|+...+|p_n (a_1-a)|}{p_1+p_2+...+p_n},$$

    and for some $N$ and $M$ we have:
    $$frac{|p_1(a_n-a)|+|p_2(a_{n-1}-a)|+...+|p_{n-N} (a_{N+1}-a)|+p_{n-N+1}M+...+p_nM}{p_1+p_2+...+p_n}.$$
    So now what do I do?










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Suppose $p_i >0 ~(i=1,2,ldots)$ and $lim_{n to infty}{frac{p_n}{p_1+p_2+...+p_n}}=0$ and $lim_{n to infty}{a_n}=a$ prove that $$lim_{n to infty}{frac{p_1a_n+p_2a_{n-1}+...+p_n a_1}{p_1+p_2+...+p_n}}=a.$$



      Now proof attempt:
      $|a_n|$ is bounded as it converges. So:
      $$left|frac{p_1a_n+p_2a_{n-1}+...+p_n a_1}{p_1+p_2+...+p_n}-aright|=left|frac{p_1(a_n-a)+p_2(a_{n-1}-a)+...+p_n (a_1-a)}{p_1+p_2+...+p_n}right| leq \
      leq frac{|p_1(a_n-a)|+|p_2(a_{n-1}-a)|+...+|p_n (a_1-a)|}{p_1+p_2+...+p_n},$$

      and for some $N$ and $M$ we have:
      $$frac{|p_1(a_n-a)|+|p_2(a_{n-1}-a)|+...+|p_{n-N} (a_{N+1}-a)|+p_{n-N+1}M+...+p_nM}{p_1+p_2+...+p_n}.$$
      So now what do I do?










      share|cite|improve this question















      Suppose $p_i >0 ~(i=1,2,ldots)$ and $lim_{n to infty}{frac{p_n}{p_1+p_2+...+p_n}}=0$ and $lim_{n to infty}{a_n}=a$ prove that $$lim_{n to infty}{frac{p_1a_n+p_2a_{n-1}+...+p_n a_1}{p_1+p_2+...+p_n}}=a.$$



      Now proof attempt:
      $|a_n|$ is bounded as it converges. So:
      $$left|frac{p_1a_n+p_2a_{n-1}+...+p_n a_1}{p_1+p_2+...+p_n}-aright|=left|frac{p_1(a_n-a)+p_2(a_{n-1}-a)+...+p_n (a_1-a)}{p_1+p_2+...+p_n}right| leq \
      leq frac{|p_1(a_n-a)|+|p_2(a_{n-1}-a)|+...+|p_n (a_1-a)|}{p_1+p_2+...+p_n},$$

      and for some $N$ and $M$ we have:
      $$frac{|p_1(a_n-a)|+|p_2(a_{n-1}-a)|+...+|p_{n-N} (a_{N+1}-a)|+p_{n-N+1}M+...+p_nM}{p_1+p_2+...+p_n}.$$
      So now what do I do?







      real-analysis






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 20 at 16:31

























      asked Nov 20 at 16:01









      mathnoob

      1,505217




      1,505217






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          You have started well and your relation holds true for a fixed natural $N$ and any $n geq N$. Since $N$ is fixed the part with $frac{(p_{n-N+1}+...+p_n)M}{p_1+...+p_n}$ will go to zero by your hypothesis(it is a sum of finitely many terms which each go to zero).



          For the second term in your fraction, note that $(a_{N+1}-a),...,(a_n-a)$ are all bounded by some $epsilon$ and that $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to one so the whole fraction $frac{|p_1(a_n-a)+...+p_{n-N}(a_{N+1}-a)|}{p1+...+p_n}$ is bounded above by $epsilonfrac{p_1+...+p_{n-N}}{p1+...+p_n}$ and goes to zero, whence your proof.






          share|cite|improve this answer





















          • why does $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to 1?
            – mathnoob
            Nov 20 at 16:29






          • 1




            it equals $1-frac{p_{n-N+1}+...+p_n}{p_1+...+p_n}$ = $1 - (frac{p_{n-N+1}}{p_1+...+p_n}+...+frac{p_{n}}{p_1+...+p_n})$ = 1 - a finite number of terms all going to 0 by your hypothesis.
            – Sorin Tirc
            Nov 20 at 16:32








          • 1




            I would suggest that you add that for each $m$, $frac{p_{n-m}}{sum_{k=1}^n p_k}to 0$ since $$left|frac{p_{n-m}}{sum_{k=1}^n p_k} right|le frac{p_{n-m}}{sum_{k=1}^{n-m} p_k}to 0$$as a consequence of $p_k>0$.
            – Mark Viola
            Nov 20 at 17:56













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006500%2fcalculate-limit-os-sequence%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote



          accepted










          You have started well and your relation holds true for a fixed natural $N$ and any $n geq N$. Since $N$ is fixed the part with $frac{(p_{n-N+1}+...+p_n)M}{p_1+...+p_n}$ will go to zero by your hypothesis(it is a sum of finitely many terms which each go to zero).



          For the second term in your fraction, note that $(a_{N+1}-a),...,(a_n-a)$ are all bounded by some $epsilon$ and that $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to one so the whole fraction $frac{|p_1(a_n-a)+...+p_{n-N}(a_{N+1}-a)|}{p1+...+p_n}$ is bounded above by $epsilonfrac{p_1+...+p_{n-N}}{p1+...+p_n}$ and goes to zero, whence your proof.






          share|cite|improve this answer





















          • why does $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to 1?
            – mathnoob
            Nov 20 at 16:29






          • 1




            it equals $1-frac{p_{n-N+1}+...+p_n}{p_1+...+p_n}$ = $1 - (frac{p_{n-N+1}}{p_1+...+p_n}+...+frac{p_{n}}{p_1+...+p_n})$ = 1 - a finite number of terms all going to 0 by your hypothesis.
            – Sorin Tirc
            Nov 20 at 16:32








          • 1




            I would suggest that you add that for each $m$, $frac{p_{n-m}}{sum_{k=1}^n p_k}to 0$ since $$left|frac{p_{n-m}}{sum_{k=1}^n p_k} right|le frac{p_{n-m}}{sum_{k=1}^{n-m} p_k}to 0$$as a consequence of $p_k>0$.
            – Mark Viola
            Nov 20 at 17:56

















          up vote
          0
          down vote



          accepted










          You have started well and your relation holds true for a fixed natural $N$ and any $n geq N$. Since $N$ is fixed the part with $frac{(p_{n-N+1}+...+p_n)M}{p_1+...+p_n}$ will go to zero by your hypothesis(it is a sum of finitely many terms which each go to zero).



          For the second term in your fraction, note that $(a_{N+1}-a),...,(a_n-a)$ are all bounded by some $epsilon$ and that $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to one so the whole fraction $frac{|p_1(a_n-a)+...+p_{n-N}(a_{N+1}-a)|}{p1+...+p_n}$ is bounded above by $epsilonfrac{p_1+...+p_{n-N}}{p1+...+p_n}$ and goes to zero, whence your proof.






          share|cite|improve this answer





















          • why does $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to 1?
            – mathnoob
            Nov 20 at 16:29






          • 1




            it equals $1-frac{p_{n-N+1}+...+p_n}{p_1+...+p_n}$ = $1 - (frac{p_{n-N+1}}{p_1+...+p_n}+...+frac{p_{n}}{p_1+...+p_n})$ = 1 - a finite number of terms all going to 0 by your hypothesis.
            – Sorin Tirc
            Nov 20 at 16:32








          • 1




            I would suggest that you add that for each $m$, $frac{p_{n-m}}{sum_{k=1}^n p_k}to 0$ since $$left|frac{p_{n-m}}{sum_{k=1}^n p_k} right|le frac{p_{n-m}}{sum_{k=1}^{n-m} p_k}to 0$$as a consequence of $p_k>0$.
            – Mark Viola
            Nov 20 at 17:56















          up vote
          0
          down vote



          accepted







          up vote
          0
          down vote



          accepted






          You have started well and your relation holds true for a fixed natural $N$ and any $n geq N$. Since $N$ is fixed the part with $frac{(p_{n-N+1}+...+p_n)M}{p_1+...+p_n}$ will go to zero by your hypothesis(it is a sum of finitely many terms which each go to zero).



          For the second term in your fraction, note that $(a_{N+1}-a),...,(a_n-a)$ are all bounded by some $epsilon$ and that $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to one so the whole fraction $frac{|p_1(a_n-a)+...+p_{n-N}(a_{N+1}-a)|}{p1+...+p_n}$ is bounded above by $epsilonfrac{p_1+...+p_{n-N}}{p1+...+p_n}$ and goes to zero, whence your proof.






          share|cite|improve this answer












          You have started well and your relation holds true for a fixed natural $N$ and any $n geq N$. Since $N$ is fixed the part with $frac{(p_{n-N+1}+...+p_n)M}{p_1+...+p_n}$ will go to zero by your hypothesis(it is a sum of finitely many terms which each go to zero).



          For the second term in your fraction, note that $(a_{N+1}-a),...,(a_n-a)$ are all bounded by some $epsilon$ and that $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to one so the whole fraction $frac{|p_1(a_n-a)+...+p_{n-N}(a_{N+1}-a)|}{p1+...+p_n}$ is bounded above by $epsilonfrac{p_1+...+p_{n-N}}{p1+...+p_n}$ and goes to zero, whence your proof.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 20 at 16:18









          Sorin Tirc

          77210




          77210












          • why does $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to 1?
            – mathnoob
            Nov 20 at 16:29






          • 1




            it equals $1-frac{p_{n-N+1}+...+p_n}{p_1+...+p_n}$ = $1 - (frac{p_{n-N+1}}{p_1+...+p_n}+...+frac{p_{n}}{p_1+...+p_n})$ = 1 - a finite number of terms all going to 0 by your hypothesis.
            – Sorin Tirc
            Nov 20 at 16:32








          • 1




            I would suggest that you add that for each $m$, $frac{p_{n-m}}{sum_{k=1}^n p_k}to 0$ since $$left|frac{p_{n-m}}{sum_{k=1}^n p_k} right|le frac{p_{n-m}}{sum_{k=1}^{n-m} p_k}to 0$$as a consequence of $p_k>0$.
            – Mark Viola
            Nov 20 at 17:56




















          • why does $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to 1?
            – mathnoob
            Nov 20 at 16:29






          • 1




            it equals $1-frac{p_{n-N+1}+...+p_n}{p_1+...+p_n}$ = $1 - (frac{p_{n-N+1}}{p_1+...+p_n}+...+frac{p_{n}}{p_1+...+p_n})$ = 1 - a finite number of terms all going to 0 by your hypothesis.
            – Sorin Tirc
            Nov 20 at 16:32








          • 1




            I would suggest that you add that for each $m$, $frac{p_{n-m}}{sum_{k=1}^n p_k}to 0$ since $$left|frac{p_{n-m}}{sum_{k=1}^n p_k} right|le frac{p_{n-m}}{sum_{k=1}^{n-m} p_k}to 0$$as a consequence of $p_k>0$.
            – Mark Viola
            Nov 20 at 17:56


















          why does $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to 1?
          – mathnoob
          Nov 20 at 16:29




          why does $frac{p_1+...+p_{n-N}}{p_1+...+p_n}$ tends to 1?
          – mathnoob
          Nov 20 at 16:29




          1




          1




          it equals $1-frac{p_{n-N+1}+...+p_n}{p_1+...+p_n}$ = $1 - (frac{p_{n-N+1}}{p_1+...+p_n}+...+frac{p_{n}}{p_1+...+p_n})$ = 1 - a finite number of terms all going to 0 by your hypothesis.
          – Sorin Tirc
          Nov 20 at 16:32






          it equals $1-frac{p_{n-N+1}+...+p_n}{p_1+...+p_n}$ = $1 - (frac{p_{n-N+1}}{p_1+...+p_n}+...+frac{p_{n}}{p_1+...+p_n})$ = 1 - a finite number of terms all going to 0 by your hypothesis.
          – Sorin Tirc
          Nov 20 at 16:32






          1




          1




          I would suggest that you add that for each $m$, $frac{p_{n-m}}{sum_{k=1}^n p_k}to 0$ since $$left|frac{p_{n-m}}{sum_{k=1}^n p_k} right|le frac{p_{n-m}}{sum_{k=1}^{n-m} p_k}to 0$$as a consequence of $p_k>0$.
          – Mark Viola
          Nov 20 at 17:56






          I would suggest that you add that for each $m$, $frac{p_{n-m}}{sum_{k=1}^n p_k}to 0$ since $$left|frac{p_{n-m}}{sum_{k=1}^n p_k} right|le frac{p_{n-m}}{sum_{k=1}^{n-m} p_k}to 0$$as a consequence of $p_k>0$.
          – Mark Viola
          Nov 20 at 17:56




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006500%2fcalculate-limit-os-sequence%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Aardman Animations

          Are they similar matrix

          “minimization” problem in Euclidean space related to orthonormal basis