Total boundedness in a sequence space
Let $pin[1,infty)$ Show that a subset $Msubseteq l^{p}(mathbb{K})$ is totally bounded if and only if M:
$underset{xin M}{text{sup}}$ $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$ for $nrightarrowinfty$ and $M$ bounded.
Now I managed to show "$Rightarrow$" (when M is totally bounded) but for the second one I have no idea how to get started. I'm sitting in a introductory class to functional analysis so it would be nice to consider that in your answers.
functional-analysis lp-spaces
add a comment |
Let $pin[1,infty)$ Show that a subset $Msubseteq l^{p}(mathbb{K})$ is totally bounded if and only if M:
$underset{xin M}{text{sup}}$ $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$ for $nrightarrowinfty$ and $M$ bounded.
Now I managed to show "$Rightarrow$" (when M is totally bounded) but for the second one I have no idea how to get started. I'm sitting in a introductory class to functional analysis so it would be nice to consider that in your answers.
functional-analysis lp-spaces
add a comment |
Let $pin[1,infty)$ Show that a subset $Msubseteq l^{p}(mathbb{K})$ is totally bounded if and only if M:
$underset{xin M}{text{sup}}$ $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$ for $nrightarrowinfty$ and $M$ bounded.
Now I managed to show "$Rightarrow$" (when M is totally bounded) but for the second one I have no idea how to get started. I'm sitting in a introductory class to functional analysis so it would be nice to consider that in your answers.
functional-analysis lp-spaces
Let $pin[1,infty)$ Show that a subset $Msubseteq l^{p}(mathbb{K})$ is totally bounded if and only if M:
$underset{xin M}{text{sup}}$ $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$ for $nrightarrowinfty$ and $M$ bounded.
Now I managed to show "$Rightarrow$" (when M is totally bounded) but for the second one I have no idea how to get started. I'm sitting in a introductory class to functional analysis so it would be nice to consider that in your answers.
functional-analysis lp-spaces
functional-analysis lp-spaces
asked Nov 26 at 12:17
Christian Singer
344113
344113
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Let $epsilon>0$. Since $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$, there exists $N$ such that:
$sumlimits_{i=N+1}^{infty}|x_{i}|^{p}< dfrac{epsilon}{3}$ for all $xin M$.
Define the projection $pi:l^p(mathbb{K})rightarrow mathbb{K}^N$, by $pi Big( big( x_ibig)_{iin mathbb{N}} Big)=(x_1, ...,x_N)$.
Since bounded sets in $mathbb{K}^N$ with the $l^p$ norm are totally bounded, and $Vert pi(x)Vert_p leq Vert xVert_p leq m$ for all $xin M$, there exists a finite set of points ${x^j }_{j=1}^{N_0}$ such that $ { pi(x^j) }_{j=1}^{N_0}$ are an $dfrac{epsilon}{3}$-net for $pi[M]$.
It remains to show that ${x^j }_{j=1}^{N_0}$ is an $epsilon$-net in $M$. Let $xin M$, we know that:
$sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} < dfrac{epsilon}{3}$ by choice of ${x^j }_{j=1}^{N_0}$. Then:
$Vert x^j-xVert_p= sumlimits_{i=1}^{infty}|x^j_{i}-x_i|^{p}= sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p}+ sumlimits_{i=N+1}^{infty}|x^j_{i}-x_i|^{p} leq$
$leq sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} + sumlimits_{i=N+1}^{infty}|x^j_{i}|^{p}+ sumlimits_{i=N+1}^{infty}|x_i|^{p} overset{x,x^jin M}{leq} dfrac{epsilon}{3}+ dfrac{epsilon}{3}+ dfrac{epsilon}{3} $
And for a general $epsilon$, you've found a finite cover of $M$ by the balls $B_{l^p}big(x^j, epsilon big)$ (radius $epsilon$).
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014238%2ftotal-boundedness-in-a-sequence-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let $epsilon>0$. Since $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$, there exists $N$ such that:
$sumlimits_{i=N+1}^{infty}|x_{i}|^{p}< dfrac{epsilon}{3}$ for all $xin M$.
Define the projection $pi:l^p(mathbb{K})rightarrow mathbb{K}^N$, by $pi Big( big( x_ibig)_{iin mathbb{N}} Big)=(x_1, ...,x_N)$.
Since bounded sets in $mathbb{K}^N$ with the $l^p$ norm are totally bounded, and $Vert pi(x)Vert_p leq Vert xVert_p leq m$ for all $xin M$, there exists a finite set of points ${x^j }_{j=1}^{N_0}$ such that $ { pi(x^j) }_{j=1}^{N_0}$ are an $dfrac{epsilon}{3}$-net for $pi[M]$.
It remains to show that ${x^j }_{j=1}^{N_0}$ is an $epsilon$-net in $M$. Let $xin M$, we know that:
$sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} < dfrac{epsilon}{3}$ by choice of ${x^j }_{j=1}^{N_0}$. Then:
$Vert x^j-xVert_p= sumlimits_{i=1}^{infty}|x^j_{i}-x_i|^{p}= sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p}+ sumlimits_{i=N+1}^{infty}|x^j_{i}-x_i|^{p} leq$
$leq sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} + sumlimits_{i=N+1}^{infty}|x^j_{i}|^{p}+ sumlimits_{i=N+1}^{infty}|x_i|^{p} overset{x,x^jin M}{leq} dfrac{epsilon}{3}+ dfrac{epsilon}{3}+ dfrac{epsilon}{3} $
And for a general $epsilon$, you've found a finite cover of $M$ by the balls $B_{l^p}big(x^j, epsilon big)$ (radius $epsilon$).
add a comment |
Let $epsilon>0$. Since $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$, there exists $N$ such that:
$sumlimits_{i=N+1}^{infty}|x_{i}|^{p}< dfrac{epsilon}{3}$ for all $xin M$.
Define the projection $pi:l^p(mathbb{K})rightarrow mathbb{K}^N$, by $pi Big( big( x_ibig)_{iin mathbb{N}} Big)=(x_1, ...,x_N)$.
Since bounded sets in $mathbb{K}^N$ with the $l^p$ norm are totally bounded, and $Vert pi(x)Vert_p leq Vert xVert_p leq m$ for all $xin M$, there exists a finite set of points ${x^j }_{j=1}^{N_0}$ such that $ { pi(x^j) }_{j=1}^{N_0}$ are an $dfrac{epsilon}{3}$-net for $pi[M]$.
It remains to show that ${x^j }_{j=1}^{N_0}$ is an $epsilon$-net in $M$. Let $xin M$, we know that:
$sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} < dfrac{epsilon}{3}$ by choice of ${x^j }_{j=1}^{N_0}$. Then:
$Vert x^j-xVert_p= sumlimits_{i=1}^{infty}|x^j_{i}-x_i|^{p}= sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p}+ sumlimits_{i=N+1}^{infty}|x^j_{i}-x_i|^{p} leq$
$leq sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} + sumlimits_{i=N+1}^{infty}|x^j_{i}|^{p}+ sumlimits_{i=N+1}^{infty}|x_i|^{p} overset{x,x^jin M}{leq} dfrac{epsilon}{3}+ dfrac{epsilon}{3}+ dfrac{epsilon}{3} $
And for a general $epsilon$, you've found a finite cover of $M$ by the balls $B_{l^p}big(x^j, epsilon big)$ (radius $epsilon$).
add a comment |
Let $epsilon>0$. Since $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$, there exists $N$ such that:
$sumlimits_{i=N+1}^{infty}|x_{i}|^{p}< dfrac{epsilon}{3}$ for all $xin M$.
Define the projection $pi:l^p(mathbb{K})rightarrow mathbb{K}^N$, by $pi Big( big( x_ibig)_{iin mathbb{N}} Big)=(x_1, ...,x_N)$.
Since bounded sets in $mathbb{K}^N$ with the $l^p$ norm are totally bounded, and $Vert pi(x)Vert_p leq Vert xVert_p leq m$ for all $xin M$, there exists a finite set of points ${x^j }_{j=1}^{N_0}$ such that $ { pi(x^j) }_{j=1}^{N_0}$ are an $dfrac{epsilon}{3}$-net for $pi[M]$.
It remains to show that ${x^j }_{j=1}^{N_0}$ is an $epsilon$-net in $M$. Let $xin M$, we know that:
$sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} < dfrac{epsilon}{3}$ by choice of ${x^j }_{j=1}^{N_0}$. Then:
$Vert x^j-xVert_p= sumlimits_{i=1}^{infty}|x^j_{i}-x_i|^{p}= sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p}+ sumlimits_{i=N+1}^{infty}|x^j_{i}-x_i|^{p} leq$
$leq sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} + sumlimits_{i=N+1}^{infty}|x^j_{i}|^{p}+ sumlimits_{i=N+1}^{infty}|x_i|^{p} overset{x,x^jin M}{leq} dfrac{epsilon}{3}+ dfrac{epsilon}{3}+ dfrac{epsilon}{3} $
And for a general $epsilon$, you've found a finite cover of $M$ by the balls $B_{l^p}big(x^j, epsilon big)$ (radius $epsilon$).
Let $epsilon>0$. Since $sumlimits_{i=n}^{infty}|x_{i}|^{p}rightarrow 0$, there exists $N$ such that:
$sumlimits_{i=N+1}^{infty}|x_{i}|^{p}< dfrac{epsilon}{3}$ for all $xin M$.
Define the projection $pi:l^p(mathbb{K})rightarrow mathbb{K}^N$, by $pi Big( big( x_ibig)_{iin mathbb{N}} Big)=(x_1, ...,x_N)$.
Since bounded sets in $mathbb{K}^N$ with the $l^p$ norm are totally bounded, and $Vert pi(x)Vert_p leq Vert xVert_p leq m$ for all $xin M$, there exists a finite set of points ${x^j }_{j=1}^{N_0}$ such that $ { pi(x^j) }_{j=1}^{N_0}$ are an $dfrac{epsilon}{3}$-net for $pi[M]$.
It remains to show that ${x^j }_{j=1}^{N_0}$ is an $epsilon$-net in $M$. Let $xin M$, we know that:
$sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} < dfrac{epsilon}{3}$ by choice of ${x^j }_{j=1}^{N_0}$. Then:
$Vert x^j-xVert_p= sumlimits_{i=1}^{infty}|x^j_{i}-x_i|^{p}= sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p}+ sumlimits_{i=N+1}^{infty}|x^j_{i}-x_i|^{p} leq$
$leq sumlimits_{i=1}^{N}|x^j_{i}-x_i|^{p} + sumlimits_{i=N+1}^{infty}|x^j_{i}|^{p}+ sumlimits_{i=N+1}^{infty}|x_i|^{p} overset{x,x^jin M}{leq} dfrac{epsilon}{3}+ dfrac{epsilon}{3}+ dfrac{epsilon}{3} $
And for a general $epsilon$, you've found a finite cover of $M$ by the balls $B_{l^p}big(x^j, epsilon big)$ (radius $epsilon$).
answered Nov 26 at 13:41
Keen-ameteur
1,265316
1,265316
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3014238%2ftotal-boundedness-in-a-sequence-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown