Evaluating $int_0^1frac{ln(1+x-x^2)}xdx$ without using poly logs.
Evaluate $$I=int_0^1frac{ln(1+x-x^2)}xdx$$ without using polylog functions.
This integral can be easily solved by factorizing $1+x-x^2$ and using the values of dilogarithm at some special points.
The motivation of writing this post is someone said that this integral cannot be solved without using special functions.
Another alternative solutions will be appreciated.
calculus integration definite-integrals
add a comment |
Evaluate $$I=int_0^1frac{ln(1+x-x^2)}xdx$$ without using polylog functions.
This integral can be easily solved by factorizing $1+x-x^2$ and using the values of dilogarithm at some special points.
The motivation of writing this post is someone said that this integral cannot be solved without using special functions.
Another alternative solutions will be appreciated.
calculus integration definite-integrals
add a comment |
Evaluate $$I=int_0^1frac{ln(1+x-x^2)}xdx$$ without using polylog functions.
This integral can be easily solved by factorizing $1+x-x^2$ and using the values of dilogarithm at some special points.
The motivation of writing this post is someone said that this integral cannot be solved without using special functions.
Another alternative solutions will be appreciated.
calculus integration definite-integrals
Evaluate $$I=int_0^1frac{ln(1+x-x^2)}xdx$$ without using polylog functions.
This integral can be easily solved by factorizing $1+x-x^2$ and using the values of dilogarithm at some special points.
The motivation of writing this post is someone said that this integral cannot be solved without using special functions.
Another alternative solutions will be appreciated.
calculus integration definite-integrals
calculus integration definite-integrals
asked Nov 17 at 12:27
Kemono Chen
2,460436
2,460436
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Put
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
end{equation*}
If we change $x$ to $ 1-x $ we get
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
end{equation*}
Consequently
begin{equation*}
2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
end{equation*}
The next step will be integration by parts.
begin{equation*}
2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
end{equation*}
Thenbegin{equation*}
I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
end{equation*}
If we substitute $ z=dfrac{x}{1-x} $ we get
begin{equation*}
I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
end{equation*}
In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
begin{equation*}
I = 2ln^2varphi
end{equation*}
where $ varphi = dfrac{1+sqrt{5}}{2}. $
add a comment |
$$begin{aligned}
I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
&overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
&overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
&overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
&=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
end{aligned}$$
Explanation
(1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.
(2) It is legal to change the position of $sum$ and $int$.
(3) Integrate by parts $n-1$ times.
Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
Letting $x=frac i2$ leads to
$$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002309%2fevaluating-int-01-frac-ln1x-x2xdx-without-using-poly-logs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Put
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
end{equation*}
If we change $x$ to $ 1-x $ we get
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
end{equation*}
Consequently
begin{equation*}
2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
end{equation*}
The next step will be integration by parts.
begin{equation*}
2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
end{equation*}
Thenbegin{equation*}
I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
end{equation*}
If we substitute $ z=dfrac{x}{1-x} $ we get
begin{equation*}
I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
end{equation*}
In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
begin{equation*}
I = 2ln^2varphi
end{equation*}
where $ varphi = dfrac{1+sqrt{5}}{2}. $
add a comment |
Put
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
end{equation*}
If we change $x$ to $ 1-x $ we get
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
end{equation*}
Consequently
begin{equation*}
2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
end{equation*}
The next step will be integration by parts.
begin{equation*}
2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
end{equation*}
Thenbegin{equation*}
I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
end{equation*}
If we substitute $ z=dfrac{x}{1-x} $ we get
begin{equation*}
I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
end{equation*}
In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
begin{equation*}
I = 2ln^2varphi
end{equation*}
where $ varphi = dfrac{1+sqrt{5}}{2}. $
add a comment |
Put
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
end{equation*}
If we change $x$ to $ 1-x $ we get
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
end{equation*}
Consequently
begin{equation*}
2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
end{equation*}
The next step will be integration by parts.
begin{equation*}
2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
end{equation*}
Thenbegin{equation*}
I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
end{equation*}
If we substitute $ z=dfrac{x}{1-x} $ we get
begin{equation*}
I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
end{equation*}
In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
begin{equation*}
I = 2ln^2varphi
end{equation*}
where $ varphi = dfrac{1+sqrt{5}}{2}. $
Put
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
end{equation*}
If we change $x$ to $ 1-x $ we get
begin{equation*}
I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
end{equation*}
Consequently
begin{equation*}
2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
end{equation*}
The next step will be integration by parts.
begin{equation*}
2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
end{equation*}
Thenbegin{equation*}
I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
end{equation*}
If we substitute $ z=dfrac{x}{1-x} $ we get
begin{equation*}
I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
end{equation*}
In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
begin{equation*}
I = 2ln^2varphi
end{equation*}
where $ varphi = dfrac{1+sqrt{5}}{2}. $
answered Nov 26 at 11:26
JanG
2,667513
2,667513
add a comment |
add a comment |
$$begin{aligned}
I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
&overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
&overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
&overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
&=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
end{aligned}$$
Explanation
(1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.
(2) It is legal to change the position of $sum$ and $int$.
(3) Integrate by parts $n-1$ times.
Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
Letting $x=frac i2$ leads to
$$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.
add a comment |
$$begin{aligned}
I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
&overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
&overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
&overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
&=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
end{aligned}$$
Explanation
(1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.
(2) It is legal to change the position of $sum$ and $int$.
(3) Integrate by parts $n-1$ times.
Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
Letting $x=frac i2$ leads to
$$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.
add a comment |
$$begin{aligned}
I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
&overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
&overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
&overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
&=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
end{aligned}$$
Explanation
(1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.
(2) It is legal to change the position of $sum$ and $int$.
(3) Integrate by parts $n-1$ times.
Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
Letting $x=frac i2$ leads to
$$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.
$$begin{aligned}
I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
&overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
&overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
&overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
&=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
&=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
end{aligned}$$
Explanation
(1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.
(2) It is legal to change the position of $sum$ and $int$.
(3) Integrate by parts $n-1$ times.
Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
Letting $x=frac i2$ leads to
$$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.
answered Nov 17 at 12:27
Kemono Chen
2,460436
2,460436
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002309%2fevaluating-int-01-frac-ln1x-x2xdx-without-using-poly-logs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown