Evaluating $int_0^1frac{ln(1+x-x^2)}xdx$ without using poly logs.












1















Evaluate $$I=int_0^1frac{ln(1+x-x^2)}xdx$$ without using polylog functions.




This integral can be easily solved by factorizing $1+x-x^2$ and using the values of dilogarithm at some special points.

The motivation of writing this post is someone said that this integral cannot be solved without using special functions.

Another alternative solutions will be appreciated.










share|cite|improve this question



























    1















    Evaluate $$I=int_0^1frac{ln(1+x-x^2)}xdx$$ without using polylog functions.




    This integral can be easily solved by factorizing $1+x-x^2$ and using the values of dilogarithm at some special points.

    The motivation of writing this post is someone said that this integral cannot be solved without using special functions.

    Another alternative solutions will be appreciated.










    share|cite|improve this question

























      1












      1








      1


      4






      Evaluate $$I=int_0^1frac{ln(1+x-x^2)}xdx$$ without using polylog functions.




      This integral can be easily solved by factorizing $1+x-x^2$ and using the values of dilogarithm at some special points.

      The motivation of writing this post is someone said that this integral cannot be solved without using special functions.

      Another alternative solutions will be appreciated.










      share|cite|improve this question














      Evaluate $$I=int_0^1frac{ln(1+x-x^2)}xdx$$ without using polylog functions.




      This integral can be easily solved by factorizing $1+x-x^2$ and using the values of dilogarithm at some special points.

      The motivation of writing this post is someone said that this integral cannot be solved without using special functions.

      Another alternative solutions will be appreciated.







      calculus integration definite-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 17 at 12:27









      Kemono Chen

      2,460436




      2,460436






















          2 Answers
          2






          active

          oldest

          votes


















          2














          Put
          begin{equation*}
          I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
          end{equation*}

          If we change $x$ to $ 1-x $ we get
          begin{equation*}
          I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
          end{equation*}

          Consequently
          begin{equation*}
          2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
          end{equation*}

          The next step will be integration by parts.
          begin{equation*}
          2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
          end{equation*}

          Thenbegin{equation*}
          I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
          end{equation*}

          If we substitute $ z=dfrac{x}{1-x} $ we get
          begin{equation*}
          I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
          end{equation*}

          In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
          begin{equation*}
          I = 2ln^2varphi
          end{equation*}

          where $ varphi = dfrac{1+sqrt{5}}{2}. $






          share|cite|improve this answer





























            4














            $$begin{aligned}
            I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
            &overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
            &overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
            &overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
            &=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
            &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
            &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
            &=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
            end{aligned}$$

            Explanation

            (1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.

            (2) It is legal to change the position of $sum$ and $int$.

            (3) Integrate by parts $n-1$ times.
            Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
            integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
            Letting $x=frac i2$ leads to
            $$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
            Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
            or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002309%2fevaluating-int-01-frac-ln1x-x2xdx-without-using-poly-logs%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2














              Put
              begin{equation*}
              I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
              end{equation*}

              If we change $x$ to $ 1-x $ we get
              begin{equation*}
              I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
              end{equation*}

              Consequently
              begin{equation*}
              2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
              end{equation*}

              The next step will be integration by parts.
              begin{equation*}
              2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
              end{equation*}

              Thenbegin{equation*}
              I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
              end{equation*}

              If we substitute $ z=dfrac{x}{1-x} $ we get
              begin{equation*}
              I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
              end{equation*}

              In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
              begin{equation*}
              I = 2ln^2varphi
              end{equation*}

              where $ varphi = dfrac{1+sqrt{5}}{2}. $






              share|cite|improve this answer


























                2














                Put
                begin{equation*}
                I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
                end{equation*}

                If we change $x$ to $ 1-x $ we get
                begin{equation*}
                I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
                end{equation*}

                Consequently
                begin{equation*}
                2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
                end{equation*}

                The next step will be integration by parts.
                begin{equation*}
                2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
                end{equation*}

                Thenbegin{equation*}
                I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
                end{equation*}

                If we substitute $ z=dfrac{x}{1-x} $ we get
                begin{equation*}
                I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
                end{equation*}

                In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
                begin{equation*}
                I = 2ln^2varphi
                end{equation*}

                where $ varphi = dfrac{1+sqrt{5}}{2}. $






                share|cite|improve this answer
























                  2












                  2








                  2






                  Put
                  begin{equation*}
                  I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
                  end{equation*}

                  If we change $x$ to $ 1-x $ we get
                  begin{equation*}
                  I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
                  end{equation*}

                  Consequently
                  begin{equation*}
                  2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
                  end{equation*}

                  The next step will be integration by parts.
                  begin{equation*}
                  2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
                  end{equation*}

                  Thenbegin{equation*}
                  I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
                  end{equation*}

                  If we substitute $ z=dfrac{x}{1-x} $ we get
                  begin{equation*}
                  I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
                  end{equation*}

                  In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
                  begin{equation*}
                  I = 2ln^2varphi
                  end{equation*}

                  where $ varphi = dfrac{1+sqrt{5}}{2}. $






                  share|cite|improve this answer












                  Put
                  begin{equation*}
                  I=int_{0}^1dfrac{ln(1+x-x^2)}{x},mathrm{d}x = int_{0}^1dfrac{ln(1+x(1-x))}{x}mathrm{d}x.
                  end{equation*}

                  If we change $x$ to $ 1-x $ we get
                  begin{equation*}
                  I=int_{0}^1dfrac{ln(1+x-x^2)}{1-x},mathrm{d}x.
                  end{equation*}

                  Consequently
                  begin{equation*}
                  2I = int_{0}^1ln(1+x-x^2)left(dfrac{1}{x}+dfrac{1}{1-x}right),mathrm{d}x.
                  end{equation*}

                  The next step will be integration by parts.
                  begin{equation*}
                  2I= underbrace{left[ln(1+x-x^2)lndfrac{x}{1-x}right]_{0}^{1}}_{=0} -int_{0}^1dfrac{1-2x}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x
                  end{equation*}

                  Thenbegin{equation*}
                  I=dfrac{1}{2}int_{0}^1dfrac{2x-1}{1+x-x^2}lndfrac{x}{1-x}, mathrm{d}x.
                  end{equation*}

                  If we substitute $ z=dfrac{x}{1-x} $ we get
                  begin{equation*}
                  I = int_{0}^{infty}dfrac{(z-1)ln z}{2(z+1)(z^2+3z+1)},mathrm{d}z.
                  end{equation*}

                  In order to evaluate this integral we integrate $displaystyle dfrac{(z-1)log^2 z}{2(z+1)(z^2+3z+1)}$ along a keyhole contour and use residue calculus. We get that
                  begin{equation*}
                  I = 2ln^2varphi
                  end{equation*}

                  where $ varphi = dfrac{1+sqrt{5}}{2}. $







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 26 at 11:26









                  JanG

                  2,667513




                  2,667513























                      4














                      $$begin{aligned}
                      I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
                      &overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
                      &overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
                      &overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
                      &=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
                      &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
                      &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
                      &=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
                      end{aligned}$$

                      Explanation

                      (1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.

                      (2) It is legal to change the position of $sum$ and $int$.

                      (3) Integrate by parts $n-1$ times.
                      Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
                      integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
                      Letting $x=frac i2$ leads to
                      $$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
                      Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
                      or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.






                      share|cite|improve this answer


























                        4














                        $$begin{aligned}
                        I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
                        &overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
                        &overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
                        &overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
                        &=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
                        &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
                        &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
                        &=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
                        end{aligned}$$

                        Explanation

                        (1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.

                        (2) It is legal to change the position of $sum$ and $int$.

                        (3) Integrate by parts $n-1$ times.
                        Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
                        integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
                        Letting $x=frac i2$ leads to
                        $$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
                        Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
                        or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.






                        share|cite|improve this answer
























                          4












                          4








                          4






                          $$begin{aligned}
                          I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
                          &overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
                          &overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
                          &overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
                          &=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
                          &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
                          &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
                          &=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
                          end{aligned}$$

                          Explanation

                          (1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.

                          (2) It is legal to change the position of $sum$ and $int$.

                          (3) Integrate by parts $n-1$ times.
                          Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
                          integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
                          Letting $x=frac i2$ leads to
                          $$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
                          Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
                          or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.






                          share|cite|improve this answer












                          $$begin{aligned}
                          I&=int_0^1frac{ln(1+x-x^2)}xmathrm{d}x\
                          &overset{(1)}{=}int_0^1sum_{n=1}^inftyfrac{(-1)^{n-1}(x-x^2)^n}{nx}mathrm{d}x\
                          &overset{(2)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nint_0^1x^{n-1}(1-x)^nmathrm{d}x\
                          &overset{(3)}{=}sum_{n=1}^inftyfrac{(-1)^{n-1}}nfrac{(n-1)!n!}{(2n)!}\
                          &=sum_{n=0}^inftyfrac{(-1)^{n}(n!)^2}{(2n+2)!}\
                          &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)(1times2timescdotstimes n)}{1times2timescdotstimes (2n+2)}\
                          &=sum_{n=0}^inftyfrac{(-1)^{n}(1times2timescdotstimes n)}{1times3times5timescdotstimes(2n+1)times (2n+2)2^n}\
                          &=sum_{n=0}^inftyfrac{(-1)^nn!}{(2n+1)!!(2n+2)2^n}
                          end{aligned}$$

                          Explanation

                          (1) Using the Maclaurin series of $ln(1+w)$, where $w=x-x^2$.

                          (2) It is legal to change the position of $sum$ and $int$.

                          (3) Integrate by parts $n-1$ times.
                          Notice that $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!}x^{2n+1}=frac{arcsin x}{sqrt{1-x^2}},$$
                          integrate both sides from $0$, we have $$sum_{n=0}^inftyfrac{(2n)!!}{(2n+1)!!(2n+2)}x^{2n+2}=frac12arcsin^2x.$$
                          Letting $x=frac i2$ leads to
                          $$sum_{n=0}^inftyfrac{(-1)^{n+1}(2n)!!}{(2n+1)!!(2n+2)}2^{-2n-2}=frac12arcsin^2frac i2.$$
                          Combining with $(2n)!!=2^{n}n!$, we have $$-frac14I=-frac12operatorname{arccsch}^22,$$
                          or $I=2ln^2varphi,$ where $varphi$ denotes the golden ratio.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Nov 17 at 12:27









                          Kemono Chen

                          2,460436




                          2,460436






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3002309%2fevaluating-int-01-frac-ln1x-x2xdx-without-using-poly-logs%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Aardman Animations

                              Are they similar matrix

                              “minimization” problem in Euclidean space related to orthonormal basis