Limit of $lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))$ (No L'Hôpital)
$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))$
I can't get to the end of this limit. Here is what I worked out:
begin{align*}
& lim_{x to 0} frac{cos 2x}{sin 2x}cdotfrac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
lim_{x to 0}frac{frac{cos2x }{2x}}{frac{sin 2x}{2x}}cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} frac{cos 2x}{2x} cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} frac{{cos^2 (x)}-{sin^2 (x)}}{2x}cdotfrac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{cos^2(x)}{2x}-frac{sin^2 x}{2x}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1-sin^2 x}{2x}-frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{1}{2x}-frac{sin^2 x}{2x}-frac{sin x}{2}right) cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1}{2x}-frac{sin x}{2}-frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{1}{2x}-2frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1}{2x}-sin xright)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
end{align*}
Here is where I can't seem to complete the limit, the 2x in the denominator is giving me a hard time and I don't know how to get rid of it. Any help would be appreciated. (In previous questions I got a really hard time because of my lack of context, I hope this one follows the rules of the site. I tried.)
calculus limits trigonometry limits-without-lhopital
add a comment |
$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))$
I can't get to the end of this limit. Here is what I worked out:
begin{align*}
& lim_{x to 0} frac{cos 2x}{sin 2x}cdotfrac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
lim_{x to 0}frac{frac{cos2x }{2x}}{frac{sin 2x}{2x}}cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} frac{cos 2x}{2x} cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} frac{{cos^2 (x)}-{sin^2 (x)}}{2x}cdotfrac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{cos^2(x)}{2x}-frac{sin^2 x}{2x}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1-sin^2 x}{2x}-frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{1}{2x}-frac{sin^2 x}{2x}-frac{sin x}{2}right) cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1}{2x}-frac{sin x}{2}-frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{1}{2x}-2frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1}{2x}-sin xright)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
end{align*}
Here is where I can't seem to complete the limit, the 2x in the denominator is giving me a hard time and I don't know how to get rid of it. Any help would be appreciated. (In previous questions I got a really hard time because of my lack of context, I hope this one follows the rules of the site. I tried.)
calculus limits trigonometry limits-without-lhopital
add a comment |
$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))$
I can't get to the end of this limit. Here is what I worked out:
begin{align*}
& lim_{x to 0} frac{cos 2x}{sin 2x}cdotfrac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
lim_{x to 0}frac{frac{cos2x }{2x}}{frac{sin 2x}{2x}}cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} frac{cos 2x}{2x} cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} frac{{cos^2 (x)}-{sin^2 (x)}}{2x}cdotfrac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{cos^2(x)}{2x}-frac{sin^2 x}{2x}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1-sin^2 x}{2x}-frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{1}{2x}-frac{sin^2 x}{2x}-frac{sin x}{2}right) cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1}{2x}-frac{sin x}{2}-frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{1}{2x}-2frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1}{2x}-sin xright)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
end{align*}
Here is where I can't seem to complete the limit, the 2x in the denominator is giving me a hard time and I don't know how to get rid of it. Any help would be appreciated. (In previous questions I got a really hard time because of my lack of context, I hope this one follows the rules of the site. I tried.)
calculus limits trigonometry limits-without-lhopital
$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))$
I can't get to the end of this limit. Here is what I worked out:
begin{align*}
& lim_{x to 0} frac{cos 2x}{sin 2x}cdotfrac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
lim_{x to 0}frac{frac{cos2x }{2x}}{frac{sin 2x}{2x}}cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} frac{cos 2x}{2x} cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} frac{{cos^2 (x)}-{sin^2 (x)}}{2x}cdotfrac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{cos^2(x)}{2x}-frac{sin^2 x}{2x}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1-sin^2 x}{2x}-frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{1}{2x}-frac{sin^2 x}{2x}-frac{sin x}{2}right) cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1}{2x}-frac{sin x}{2}-frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
= lim_{x to 0} left(frac{1}{2x}-2frac{sin x}{2}right)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )} \
= & lim_{x to 0} left(frac{1}{2x}-sin xright)cdot frac{cos(frac{pi }{2}-x )}{sin(frac{pi }{2}-x )}
end{align*}
Here is where I can't seem to complete the limit, the 2x in the denominator is giving me a hard time and I don't know how to get rid of it. Any help would be appreciated. (In previous questions I got a really hard time because of my lack of context, I hope this one follows the rules of the site. I tried.)
calculus limits trigonometry limits-without-lhopital
calculus limits trigonometry limits-without-lhopital
edited Nov 24 at 18:57
quid♦
36.9k95093
36.9k95093
asked Nov 24 at 13:14
Jakcjones
318
318
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
HINT
We have that
$$cot (2x)cotleft(frac{pi }{2}-xright)=frac{cos(2x)}{sin(2x)}frac{sin x}{cos x}$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Indeed that’s the key point to recognize if you know the standard limit sinx/x. In general, it’s often good to reduce to sin x and cos x the expression.
– gimusi
Nov 24 at 13:42
add a comment |
Hint:
$$lim_{x to 0} cot (2x)cot (frac{pi }{2}-x)=lim_{x to 0} cot (2x)tan x=lim_{x to 0} dfrac{cos2x}{sin2x}dfrac{sin x}{cos x}=lim_{x to 0} dfrac{cos2x}{1}dfrac{2x}{sin2x}dfrac{sin x}{x}dfrac{1}{cos x}dfrac12$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:28
add a comment |
$displaystyle cot 2xcot left(frac{pi }{2}-xright)=cot (2x)tan (x)=dfrac{cos 2xcdot sin x}{2sin xcos^2 x}=dfrac{cos 2x}{2cos^2x}$
$displaystylelim_{xto0} cot 2xcot left(frac{pi }{2}-xright)=displaystylelim_{xto0}dfrac{cos 2x}{2cos^2x}=dfrac12 $
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
add a comment |
Hint: $$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))=lim_{x to 0} {cos (2x)over sin 2x}tan (x) =lim_{x to 0} {cos (2x)over 2sin xcos x}{sin xover cos x}$$
$$=lim_{x to 0} {cos (2x)over 2cos^2 x} = {1over 2}$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:26
add a comment |
$$F(x)=cot2xcotleft(dfracpi2-xright)=dfrac{tan x}{tan2x}=dfrac{tan x(1-tan^2x)}{2tan x}$$
For $tan xne0,F(x)=dfrac{1-tan^2x}2$
As $xto0,xne0implieslim_{xto0}F(x)=lim_{xto0}dfrac{1-tan^2x}2=?$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011543%2flimit-of-lim-x-to-0-cot-2x-cot-frac-pi-2-x-no-lh%25c3%25b4pital%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
HINT
We have that
$$cot (2x)cotleft(frac{pi }{2}-xright)=frac{cos(2x)}{sin(2x)}frac{sin x}{cos x}$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Indeed that’s the key point to recognize if you know the standard limit sinx/x. In general, it’s often good to reduce to sin x and cos x the expression.
– gimusi
Nov 24 at 13:42
add a comment |
HINT
We have that
$$cot (2x)cotleft(frac{pi }{2}-xright)=frac{cos(2x)}{sin(2x)}frac{sin x}{cos x}$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Indeed that’s the key point to recognize if you know the standard limit sinx/x. In general, it’s often good to reduce to sin x and cos x the expression.
– gimusi
Nov 24 at 13:42
add a comment |
HINT
We have that
$$cot (2x)cotleft(frac{pi }{2}-xright)=frac{cos(2x)}{sin(2x)}frac{sin x}{cos x}$$
HINT
We have that
$$cot (2x)cotleft(frac{pi }{2}-xright)=frac{cos(2x)}{sin(2x)}frac{sin x}{cos x}$$
edited Nov 24 at 13:46
answered Nov 24 at 13:19
gimusi
1
1
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Indeed that’s the key point to recognize if you know the standard limit sinx/x. In general, it’s often good to reduce to sin x and cos x the expression.
– gimusi
Nov 24 at 13:42
add a comment |
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Indeed that’s the key point to recognize if you know the standard limit sinx/x. In general, it’s often good to reduce to sin x and cos x the expression.
– gimusi
Nov 24 at 13:42
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Indeed that’s the key point to recognize if you know the standard limit sinx/x. In general, it’s often good to reduce to sin x and cos x the expression.
– gimusi
Nov 24 at 13:42
Indeed that’s the key point to recognize if you know the standard limit sinx/x. In general, it’s often good to reduce to sin x and cos x the expression.
– gimusi
Nov 24 at 13:42
add a comment |
Hint:
$$lim_{x to 0} cot (2x)cot (frac{pi }{2}-x)=lim_{x to 0} cot (2x)tan x=lim_{x to 0} dfrac{cos2x}{sin2x}dfrac{sin x}{cos x}=lim_{x to 0} dfrac{cos2x}{1}dfrac{2x}{sin2x}dfrac{sin x}{x}dfrac{1}{cos x}dfrac12$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:28
add a comment |
Hint:
$$lim_{x to 0} cot (2x)cot (frac{pi }{2}-x)=lim_{x to 0} cot (2x)tan x=lim_{x to 0} dfrac{cos2x}{sin2x}dfrac{sin x}{cos x}=lim_{x to 0} dfrac{cos2x}{1}dfrac{2x}{sin2x}dfrac{sin x}{x}dfrac{1}{cos x}dfrac12$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:28
add a comment |
Hint:
$$lim_{x to 0} cot (2x)cot (frac{pi }{2}-x)=lim_{x to 0} cot (2x)tan x=lim_{x to 0} dfrac{cos2x}{sin2x}dfrac{sin x}{cos x}=lim_{x to 0} dfrac{cos2x}{1}dfrac{2x}{sin2x}dfrac{sin x}{x}dfrac{1}{cos x}dfrac12$$
Hint:
$$lim_{x to 0} cot (2x)cot (frac{pi }{2}-x)=lim_{x to 0} cot (2x)tan x=lim_{x to 0} dfrac{cos2x}{sin2x}dfrac{sin x}{cos x}=lim_{x to 0} dfrac{cos2x}{1}dfrac{2x}{sin2x}dfrac{sin x}{x}dfrac{1}{cos x}dfrac12$$
answered Nov 24 at 13:18
Nosrati
26.4k62353
26.4k62353
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:28
add a comment |
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:28
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:28
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:28
add a comment |
$displaystyle cot 2xcot left(frac{pi }{2}-xright)=cot (2x)tan (x)=dfrac{cos 2xcdot sin x}{2sin xcos^2 x}=dfrac{cos 2x}{2cos^2x}$
$displaystylelim_{xto0} cot 2xcot left(frac{pi }{2}-xright)=displaystylelim_{xto0}dfrac{cos 2x}{2cos^2x}=dfrac12 $
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
add a comment |
$displaystyle cot 2xcot left(frac{pi }{2}-xright)=cot (2x)tan (x)=dfrac{cos 2xcdot sin x}{2sin xcos^2 x}=dfrac{cos 2x}{2cos^2x}$
$displaystylelim_{xto0} cot 2xcot left(frac{pi }{2}-xright)=displaystylelim_{xto0}dfrac{cos 2x}{2cos^2x}=dfrac12 $
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
add a comment |
$displaystyle cot 2xcot left(frac{pi }{2}-xright)=cot (2x)tan (x)=dfrac{cos 2xcdot sin x}{2sin xcos^2 x}=dfrac{cos 2x}{2cos^2x}$
$displaystylelim_{xto0} cot 2xcot left(frac{pi }{2}-xright)=displaystylelim_{xto0}dfrac{cos 2x}{2cos^2x}=dfrac12 $
$displaystyle cot 2xcot left(frac{pi }{2}-xright)=cot (2x)tan (x)=dfrac{cos 2xcdot sin x}{2sin xcos^2 x}=dfrac{cos 2x}{2cos^2x}$
$displaystylelim_{xto0} cot 2xcot left(frac{pi }{2}-xright)=displaystylelim_{xto0}dfrac{cos 2x}{2cos^2x}=dfrac12 $
answered Nov 24 at 13:20
Yadati Kiran
1,702519
1,702519
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
add a comment |
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:27
add a comment |
Hint: $$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))=lim_{x to 0} {cos (2x)over sin 2x}tan (x) =lim_{x to 0} {cos (2x)over 2sin xcos x}{sin xover cos x}$$
$$=lim_{x to 0} {cos (2x)over 2cos^2 x} = {1over 2}$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:26
add a comment |
Hint: $$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))=lim_{x to 0} {cos (2x)over sin 2x}tan (x) =lim_{x to 0} {cos (2x)over 2sin xcos x}{sin xover cos x}$$
$$=lim_{x to 0} {cos (2x)over 2cos^2 x} = {1over 2}$$
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:26
add a comment |
Hint: $$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))=lim_{x to 0} {cos (2x)over sin 2x}tan (x) =lim_{x to 0} {cos (2x)over 2sin xcos x}{sin xover cos x}$$
$$=lim_{x to 0} {cos (2x)over 2cos^2 x} = {1over 2}$$
Hint: $$lim_{x to 0} (cot (2x)cot (frac{pi }{2}-x))=lim_{x to 0} {cos (2x)over sin 2x}tan (x) =lim_{x to 0} {cos (2x)over 2sin xcos x}{sin xover cos x}$$
$$=lim_{x to 0} {cos (2x)over 2cos^2 x} = {1over 2}$$
answered Nov 24 at 13:17
greedoid
37.5k114794
37.5k114794
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:26
add a comment |
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:26
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:26
Thanks, that tan(x) identity was what saved me :D
– Jakcjones
Nov 24 at 13:26
add a comment |
$$F(x)=cot2xcotleft(dfracpi2-xright)=dfrac{tan x}{tan2x}=dfrac{tan x(1-tan^2x)}{2tan x}$$
For $tan xne0,F(x)=dfrac{1-tan^2x}2$
As $xto0,xne0implieslim_{xto0}F(x)=lim_{xto0}dfrac{1-tan^2x}2=?$
add a comment |
$$F(x)=cot2xcotleft(dfracpi2-xright)=dfrac{tan x}{tan2x}=dfrac{tan x(1-tan^2x)}{2tan x}$$
For $tan xne0,F(x)=dfrac{1-tan^2x}2$
As $xto0,xne0implieslim_{xto0}F(x)=lim_{xto0}dfrac{1-tan^2x}2=?$
add a comment |
$$F(x)=cot2xcotleft(dfracpi2-xright)=dfrac{tan x}{tan2x}=dfrac{tan x(1-tan^2x)}{2tan x}$$
For $tan xne0,F(x)=dfrac{1-tan^2x}2$
As $xto0,xne0implieslim_{xto0}F(x)=lim_{xto0}dfrac{1-tan^2x}2=?$
$$F(x)=cot2xcotleft(dfracpi2-xright)=dfrac{tan x}{tan2x}=dfrac{tan x(1-tan^2x)}{2tan x}$$
For $tan xne0,F(x)=dfrac{1-tan^2x}2$
As $xto0,xne0implieslim_{xto0}F(x)=lim_{xto0}dfrac{1-tan^2x}2=?$
answered Nov 26 at 6:49
lab bhattacharjee
222k15156274
222k15156274
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011543%2flimit-of-lim-x-to-0-cot-2x-cot-frac-pi-2-x-no-lh%25c3%25b4pital%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown