Recurrence relation/with limit












1














Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$



$F_0:=0$ and $F_1:=1$.



How to compute



$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?



I tried to use Binet's formula:



$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$



But I don't know what to do next.



I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?










share|cite|improve this question
























  • How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
    – Yadati Kiran
    Nov 27 at 12:07






  • 2




    Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
    – 5xum
    Nov 27 at 12:08






  • 5




    What is $F_2{}$?
    – Arthur
    Nov 27 at 12:11






  • 3




    In that case, how do you evaluate $displaystyle F_{2}$ ?.
    – Felix Marin
    Nov 27 at 17:21






  • 1




    Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
    – Teepeemm
    Nov 27 at 18:07
















1














Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$



$F_0:=0$ and $F_1:=1$.



How to compute



$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?



I tried to use Binet's formula:



$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$



But I don't know what to do next.



I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?










share|cite|improve this question
























  • How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
    – Yadati Kiran
    Nov 27 at 12:07






  • 2




    Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
    – 5xum
    Nov 27 at 12:08






  • 5




    What is $F_2{}$?
    – Arthur
    Nov 27 at 12:11






  • 3




    In that case, how do you evaluate $displaystyle F_{2}$ ?.
    – Felix Marin
    Nov 27 at 17:21






  • 1




    Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
    – Teepeemm
    Nov 27 at 18:07














1












1








1


1





Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$



$F_0:=0$ and $F_1:=1$.



How to compute



$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?



I tried to use Binet's formula:



$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$



But I don't know what to do next.



I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?










share|cite|improve this question















Let $F_{n+1}=F_{n-1}+F_{n-2}$ for $n in mathbb{N}$ with $n geq 2$



$F_0:=0$ and $F_1:=1$.



How to compute



$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$?



I tried to use Binet's formula:



$limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=limlimits_{ntoinfty}frac{frac{1}{sqrt{5}}(xi^{n-1}-phi^{n-1})}{frac{1}{sqrt{5}}(xi^{n+1}-phi^{n+1})}=limlimits_{xtoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}$



But I don't know what to do next.



I suppose $xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})=xi$ but what about ${xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}$?







recurrence-relations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 27 at 12:37









Mostafa Ayaz

13.7k3836




13.7k3836










asked Nov 27 at 12:05









Nekarts

234




234












  • How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
    – Yadati Kiran
    Nov 27 at 12:07






  • 2




    Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
    – 5xum
    Nov 27 at 12:08






  • 5




    What is $F_2{}$?
    – Arthur
    Nov 27 at 12:11






  • 3




    In that case, how do you evaluate $displaystyle F_{2}$ ?.
    – Felix Marin
    Nov 27 at 17:21






  • 1




    Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
    – Teepeemm
    Nov 27 at 18:07


















  • How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
    – Yadati Kiran
    Nov 27 at 12:07






  • 2




    Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
    – 5xum
    Nov 27 at 12:08






  • 5




    What is $F_2{}$?
    – Arthur
    Nov 27 at 12:11






  • 3




    In that case, how do you evaluate $displaystyle F_{2}$ ?.
    – Felix Marin
    Nov 27 at 17:21






  • 1




    Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
    – Teepeemm
    Nov 27 at 18:07
















How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07




How do you prove existence of $limlimits_{ntoinfty}frac{F_{n-1}}{F_{n+1}}$.
– Yadati Kiran
Nov 27 at 12:07




2




2




Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08




Are you sure it's $$F_{n+1} = F_{n-1} + F_{n-2}$$ and not $$F_n=F_{n-1}+F_{n-2}?$$
– 5xum
Nov 27 at 12:08




5




5




What is $F_2{}$?
– Arthur
Nov 27 at 12:11




What is $F_2{}$?
– Arthur
Nov 27 at 12:11




3




3




In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21




In that case, how do you evaluate $displaystyle F_{2}$ ?.
– Felix Marin
Nov 27 at 17:21




1




1




Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07




Binet's formula is only valid if $F_n=F_{n-1}+F_{n-2}$.
– Teepeemm
Nov 27 at 18:07










4 Answers
4






active

oldest

votes


















1














We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$






share|cite|improve this answer





















  • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
    – Teepeemm
    Dec 3 at 16:20










  • It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
    – Mostafa Ayaz
    Dec 3 at 16:22










  • Not if $F_2=15$. Double check the comments on the original post.
    – Teepeemm
    Dec 3 at 16:23



















5














$$F_{n+1}=F_n+F_{n-1}$$



$$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$



If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$



Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$






share|cite|improve this answer





















  • OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
    – Teepeemm
    Dec 3 at 16:21



















3














After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$






share|cite|improve this answer





















  • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
    – Teepeemm
    Dec 3 at 16:20



















0














(Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)



Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.



Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015694%2frecurrence-relation-with-limit%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    4 Answers
    4






    active

    oldest

    votes








    4 Answers
    4






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$






    share|cite|improve this answer





















    • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
      – Teepeemm
      Dec 3 at 16:20










    • It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
      – Mostafa Ayaz
      Dec 3 at 16:22










    • Not if $F_2=15$. Double check the comments on the original post.
      – Teepeemm
      Dec 3 at 16:23
















    1














    We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$






    share|cite|improve this answer





















    • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
      – Teepeemm
      Dec 3 at 16:20










    • It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
      – Mostafa Ayaz
      Dec 3 at 16:22










    • Not if $F_2=15$. Double check the comments on the original post.
      – Teepeemm
      Dec 3 at 16:23














    1












    1








    1






    We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$






    share|cite|improve this answer












    We have$$limlimits_{ntoinfty}frac{xi^{n-1}(1-frac{phi^{n-1}}{xi^{n-1}})}{xi^{n+1}(1-frac{phi^{n+1}}{xi^{n+1}})}={1over xi ^2}lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}$$where $${phiover xi}={{1-sqrt 5over 2}over {1+sqrt 5over 2}}={1-sqrt 5over 1+sqrt 5}$$therefore $-1<{phi over xi}<0$and we obtain $$lim_{nto infty}{1-left({phiover xi}right)^{n-1}over 1-left({phiover xi}right)^{n+1}}={1over xi ^2}={3-sqrt 5over 2}$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 27 at 12:34









    Mostafa Ayaz

    13.7k3836




    13.7k3836












    • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
      – Teepeemm
      Dec 3 at 16:20










    • It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
      – Mostafa Ayaz
      Dec 3 at 16:22










    • Not if $F_2=15$. Double check the comments on the original post.
      – Teepeemm
      Dec 3 at 16:23


















    • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
      – Teepeemm
      Dec 3 at 16:20










    • It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
      – Mostafa Ayaz
      Dec 3 at 16:22










    • Not if $F_2=15$. Double check the comments on the original post.
      – Teepeemm
      Dec 3 at 16:23
















    Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
    – Teepeemm
    Dec 3 at 16:20




    Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
    – Teepeemm
    Dec 3 at 16:20












    It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
    – Mostafa Ayaz
    Dec 3 at 16:22




    It is a Fibonacci sequence. $0,1,1,2,3,5,8,cdots$
    – Mostafa Ayaz
    Dec 3 at 16:22












    Not if $F_2=15$. Double check the comments on the original post.
    – Teepeemm
    Dec 3 at 16:23




    Not if $F_2=15$. Double check the comments on the original post.
    – Teepeemm
    Dec 3 at 16:23











    5














    $$F_{n+1}=F_n+F_{n-1}$$



    $$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$



    If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$



    Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$






    share|cite|improve this answer





















    • OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
      – Teepeemm
      Dec 3 at 16:21
















    5














    $$F_{n+1}=F_n+F_{n-1}$$



    $$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$



    If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$



    Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$






    share|cite|improve this answer





















    • OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
      – Teepeemm
      Dec 3 at 16:21














    5












    5








    5






    $$F_{n+1}=F_n+F_{n-1}$$



    $$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$



    If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$



    Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$






    share|cite|improve this answer












    $$F_{n+1}=F_n+F_{n-1}$$



    $$impliesdfrac{F_{n+1}}{F_n}=dfrac{F_{n-1}}{F_n}+1$$



    If $lim_{ntoinfty}dfrac{F_{n+1}}{F_n}=a,$ we have $$a=dfrac1a+1iff a^2-a-1=0, a=?$$



    Finally $lim_{ntoinfty}dfrac{F_{n+1}}{F_{n-1}}=lim_{ntoinfty}dfrac{F_{n+1}}{F_n}cdotlim_{ntoinfty}dfrac{F_n}{F_{n-1}}=a^2$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 27 at 13:06









    lab bhattacharjee

    223k15156274




    223k15156274












    • OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
      – Teepeemm
      Dec 3 at 16:21


















    • OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
      – Teepeemm
      Dec 3 at 16:21
















    OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
    – Teepeemm
    Dec 3 at 16:21




    OP specified that $F_{n+1}=F_{n-1}+F_{n-2}$.
    – Teepeemm
    Dec 3 at 16:21











    3














    After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$






    share|cite|improve this answer





















    • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
      – Teepeemm
      Dec 3 at 16:20
















    3














    After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$






    share|cite|improve this answer





















    • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
      – Teepeemm
      Dec 3 at 16:20














    3












    3








    3






    After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$






    share|cite|improve this answer












    After$$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{frac{1}{sqrt{5}}left(xi^{n-1}-phi^{n-1}right)}{frac{1}{sqrt{5}}left(xi^{n+1}-phi^{n+1}right)},$$you should have obtained$$lim_{ntoinfty}frac{xi^{n-1}left(1-frac{phi^{n-1}}{xi^{n-1}}right)}{xi^{n+1}left(1-frac{phi^{n+1}}{xi^{n+1}}right)},$$which is equal to$$frac1{xi^2}lim_{ntoinfty}frac{1-frac{phi^{n-1}}{xi^{n-1}}}{1-frac{phi^{n+1}}{xi^{n+1}}}=frac1{xi^2}.$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 27 at 12:12









    José Carlos Santos

    150k22120221




    150k22120221












    • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
      – Teepeemm
      Dec 3 at 16:20


















    • Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
      – Teepeemm
      Dec 3 at 16:20
















    Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
    – Teepeemm
    Dec 3 at 16:20




    Whether intentionally or not, OP is not using the Fibonacci sequence, so Binet's formula is not valid.
    – Teepeemm
    Dec 3 at 16:20











    0














    (Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)



    Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.



    Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
    $$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$






    share|cite|improve this answer


























      0














      (Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)



      Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.



      Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
      $$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$






      share|cite|improve this answer
























        0












        0








        0






        (Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)



        Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.



        Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
        $$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$






        share|cite|improve this answer












        (Note that the sequence is ill-posed as you haven't specified $F_2$. Nevertheless, we may proceed regardless of the value.)



        Let's suppose that $F_n=alpha^n$. Then the recurrence relation tells us that $alpha^{n+1}=alpha^{n-1}+alpha^{n-2}$, so that $alpha^3-alpha-1=0$. Because the recurrence is linear with three degrees of freedom, all solutions will be of the form $F_n=c_1alpha_1+c_2alpha_2+c_3alpha_3$, where $c_i$ are constants that depend on $F_0$, $F_1$, and $F_2$, and $alpha_i$ are the roots of $alpha^3-alpha-1=0$.



        Luckily, this equation has a unique root with magnitude greater than 1, which is approximately 1.32. Call this $alpha_*$. Then
        $$lim_{ntoinfty}frac{F_{n-1}}{F_{n+1}}=lim_{ntoinfty}frac{F_{n-1}}{F_n}lim_{ntoinfty}frac{F_n}{F_{n+1}}=alpha_*^{-2}approx.57.$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 3 at 16:46









        Teepeemm

        69259




        69259






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015694%2frecurrence-relation-with-limit%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            Grease: Live!

            When does type information flow backwards in C++?