integration question $int_{-1}^{1}left(frac{1-x}{1+x}right)^afrac{dx}{(x-b)^2}$












3












$begingroup$


How to integrate this integral $displaystyleint_{-1}^{1}bigg(frac{1-x}{1+x}bigg)^afrac{dx}{(x-b)^2}$ where $0<a<1$ and $b>1$



Answer. I put this into online integral calculator, but it said it cann't do this integration.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
    $endgroup$
    – clathratus
    Dec 21 '18 at 5:40










  • $begingroup$
    @clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 11:54
















3












$begingroup$


How to integrate this integral $displaystyleint_{-1}^{1}bigg(frac{1-x}{1+x}bigg)^afrac{dx}{(x-b)^2}$ where $0<a<1$ and $b>1$



Answer. I put this into online integral calculator, but it said it cann't do this integration.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
    $endgroup$
    – clathratus
    Dec 21 '18 at 5:40










  • $begingroup$
    @clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 11:54














3












3








3


0



$begingroup$


How to integrate this integral $displaystyleint_{-1}^{1}bigg(frac{1-x}{1+x}bigg)^afrac{dx}{(x-b)^2}$ where $0<a<1$ and $b>1$



Answer. I put this into online integral calculator, but it said it cann't do this integration.










share|cite|improve this question











$endgroup$




How to integrate this integral $displaystyleint_{-1}^{1}bigg(frac{1-x}{1+x}bigg)^afrac{dx}{(x-b)^2}$ where $0<a<1$ and $b>1$



Answer. I put this into online integral calculator, but it said it cann't do this integration.







calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 21 '18 at 5:56









Kemono Chen

3,1891844




3,1891844










asked Dec 21 '18 at 5:33









Dhamnekar WinodDhamnekar Winod

427514




427514








  • 2




    $begingroup$
    There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
    $endgroup$
    – clathratus
    Dec 21 '18 at 5:40










  • $begingroup$
    @clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 11:54














  • 2




    $begingroup$
    There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
    $endgroup$
    – clathratus
    Dec 21 '18 at 5:40










  • $begingroup$
    @clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 11:54








2




2




$begingroup$
There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
$endgroup$
– clathratus
Dec 21 '18 at 5:40




$begingroup$
There are a lot of integrals that the online integral calculator can't handle. Try wolfram alpha
$endgroup$
– clathratus
Dec 21 '18 at 5:40












$begingroup$
@clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 11:54




$begingroup$
@clathratus, I used wolfram alpha also, it said 'Standard computation time exceeded'
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 11:54










1 Answer
1






active

oldest

votes


















9












$begingroup$

First, substitute $t = (1-x)/(1+x)$.



$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$



Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,



$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$



Using the beta function



$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$



we identify $x=1-a$ and $y=1+a$. Then



$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$



Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have



$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$



The answer is then



$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 13:57










  • $begingroup$
    That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 16:17










  • $begingroup$
    ,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 16:51












  • $begingroup$
    So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 18:45













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048211%2fintegration-question-int-11-left-frac1-x1x-righta-fracdxx-b%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









9












$begingroup$

First, substitute $t = (1-x)/(1+x)$.



$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$



Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,



$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$



Using the beta function



$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$



we identify $x=1-a$ and $y=1+a$. Then



$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$



Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have



$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$



The answer is then



$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 13:57










  • $begingroup$
    That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 16:17










  • $begingroup$
    ,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 16:51












  • $begingroup$
    So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 18:45


















9












$begingroup$

First, substitute $t = (1-x)/(1+x)$.



$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$



Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,



$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$



Using the beta function



$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$



we identify $x=1-a$ and $y=1+a$. Then



$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$



Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have



$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$



The answer is then



$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 13:57










  • $begingroup$
    That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 16:17










  • $begingroup$
    ,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 16:51












  • $begingroup$
    So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 18:45
















9












9








9





$begingroup$

First, substitute $t = (1-x)/(1+x)$.



$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$



Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,



$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$



Using the beta function



$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$



we identify $x=1-a$ and $y=1+a$. Then



$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$



Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have



$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$



The answer is then



$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$






share|cite|improve this answer











$endgroup$



First, substitute $t = (1-x)/(1+x)$.



$$begin{aligned} I = int_{-1}^{1}left(frac{1-x}{1+x}right)^{a}frac{mathrm{d}x}{(x-b)^{2}} &= frac{1}{2}int_{0}^{infty}t^{a}left(frac{x+1}{x-b}right)^{2}mathrm{d}t \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(1-t-b(1+t))^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((1-b) - (1+b)t)^{2}} \
&= 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{((b+1)t + (b-1))^{2}}end{aligned}$$



Let $b_{pm} = bpm 1$. Then after $u = b_{+}t/b_{-}$,



$$begin{aligned} I = 2int_{0}^{infty}frac{t^{a},mathrm{d}t}{(b_{+}t + b_{-})^{2}} &= frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}int_{0}^{infty}frac{u^{a},mathrm{d}u}{(u+1)^{2}}.end{aligned}$$



Using the beta function



$$ frac{Gamma(x)Gamma(y)}{Gamma(x+y)} = int_{0}^{infty}frac{z^{y-1},mathrm{d}z}{(z+1)^{x+y}},$$



we identify $x=1-a$ and $y=1+a$. Then



$$ I = frac{2}{b_{-}^{2}}left(frac{b_{-}}{b_{+}}right)^{a+1}frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)}.$$



Using the reflection identity $Gamma(z)Gamma(1-z) = pi/sinpi z$ and recursion $Gamma(1+a) = aGamma(a)$, we have



$$ frac{Gamma(1-a)Gamma(1+a)}{Gamma(2)} = Gamma(1-a)aGamma(a) = frac{pi a}{sinpi a}.$$



The answer is then



$$ I = frac{2}{(b-1)^{2}}left(frac{b-1}{b+1}right)^{a}frac{b-1}{b+1}frac{pi a}{sinpi a} = boxed{frac{2}{b^{2}-1}left(frac{b-1}{b+1}right)^{a}frac{pi a}{sinpi a}.}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Dec 21 '18 at 7:04

























answered Dec 21 '18 at 6:52









IninterrompueIninterrompue

67519




67519












  • $begingroup$
    why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 13:57










  • $begingroup$
    That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 16:17










  • $begingroup$
    ,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 16:51












  • $begingroup$
    So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 18:45




















  • $begingroup$
    why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 13:57










  • $begingroup$
    That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 16:17










  • $begingroup$
    ,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
    $endgroup$
    – Dhamnekar Winod
    Dec 21 '18 at 16:51












  • $begingroup$
    So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
    $endgroup$
    – Ininterrompue
    Dec 21 '18 at 18:45


















$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57




$begingroup$
why did you multiply the right hand side integral by $frac{1}{b^2-1}$?
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 13:57












$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17




$begingroup$
That comes from simplifying the $b$ terms: $(b-1)(b+1)$. Notice the exponent on $b_{-}/b_{+}$.
$endgroup$
– Ininterrompue
Dec 21 '18 at 16:17












$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51






$begingroup$
,but $du=frac{b+1}{b-1}dt$ and $u^a=bigg(frac{(b+1)t}{b-1}bigg)^a$. So the term $bigg(frac{b-1}{b+1}bigg)^{a+1}$outside the integral cancels the term Inside the integral.
$endgroup$
– Dhamnekar Winod
Dec 21 '18 at 16:51














$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45






$begingroup$
So first, you pull $1/b_{-}^{2}$ out of the integral, then you do u-sub. The term $t^{a}$ pulls $(b_{-}/b_{+})^{a}$ out of the integral, while $mathrm{d}t$ pulls another factor of $b_{-}/b_{+}$. There is no cancellation; $(b_{-}/b_{+})^{a+1}$ is the result of the substitution.
$endgroup$
– Ininterrompue
Dec 21 '18 at 18:45




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048211%2fintegration-question-int-11-left-frac1-x1x-righta-fracdxx-b%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How do I know what Microsoft account the skydrive app is syncing to?

Grease: Live!

When does type information flow backwards in C++?