$lim_{n to infty}(1+frac{1}{n^2})(1+frac{2}{n^2})…(1+frac{n}{n^2})=e^{frac{1}{2}}$.












1












$begingroup$


Here is the beginning of a proof:
Suppose $0<k leq n$,
$1+frac{1}{n}<(1+frac{k}{n^2})(1+frac{n+1-k}{n^2})=1+frac{n+1}{n^2}+frac{k(n+1-k)}{n^4}leq 1+frac{1}{n}+frac{1}{n^2}+frac{(n+1)^2}{4n^4}$.
I'm confused by the second inequality above.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 17:46












  • $begingroup$
    yes, that is what I'm confused about
    $endgroup$
    – nafhgood
    Dec 14 '18 at 17:47






  • 2




    $begingroup$
    Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 17:50












  • $begingroup$
    The second inequality is just GM < AM with $k, n+1-k$
    $endgroup$
    – Naweed G. Seldon
    Dec 14 '18 at 17:50








  • 2




    $begingroup$
    Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 18:10
















1












$begingroup$


Here is the beginning of a proof:
Suppose $0<k leq n$,
$1+frac{1}{n}<(1+frac{k}{n^2})(1+frac{n+1-k}{n^2})=1+frac{n+1}{n^2}+frac{k(n+1-k)}{n^4}leq 1+frac{1}{n}+frac{1}{n^2}+frac{(n+1)^2}{4n^4}$.
I'm confused by the second inequality above.










share|cite|improve this question









$endgroup$












  • $begingroup$
    Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 17:46












  • $begingroup$
    yes, that is what I'm confused about
    $endgroup$
    – nafhgood
    Dec 14 '18 at 17:47






  • 2




    $begingroup$
    Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 17:50












  • $begingroup$
    The second inequality is just GM < AM with $k, n+1-k$
    $endgroup$
    – Naweed G. Seldon
    Dec 14 '18 at 17:50








  • 2




    $begingroup$
    Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 18:10














1












1








1


1



$begingroup$


Here is the beginning of a proof:
Suppose $0<k leq n$,
$1+frac{1}{n}<(1+frac{k}{n^2})(1+frac{n+1-k}{n^2})=1+frac{n+1}{n^2}+frac{k(n+1-k)}{n^4}leq 1+frac{1}{n}+frac{1}{n^2}+frac{(n+1)^2}{4n^4}$.
I'm confused by the second inequality above.










share|cite|improve this question









$endgroup$




Here is the beginning of a proof:
Suppose $0<k leq n$,
$1+frac{1}{n}<(1+frac{k}{n^2})(1+frac{n+1-k}{n^2})=1+frac{n+1}{n^2}+frac{k(n+1-k)}{n^4}leq 1+frac{1}{n}+frac{1}{n^2}+frac{(n+1)^2}{4n^4}$.
I'm confused by the second inequality above.







real-analysis sequences-and-series inequality






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 14 '18 at 17:44









nafhgoodnafhgood

1,805422




1,805422












  • $begingroup$
    Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 17:46












  • $begingroup$
    yes, that is what I'm confused about
    $endgroup$
    – nafhgood
    Dec 14 '18 at 17:47






  • 2




    $begingroup$
    Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 17:50












  • $begingroup$
    The second inequality is just GM < AM with $k, n+1-k$
    $endgroup$
    – Naweed G. Seldon
    Dec 14 '18 at 17:50








  • 2




    $begingroup$
    Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 18:10


















  • $begingroup$
    Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 17:46












  • $begingroup$
    yes, that is what I'm confused about
    $endgroup$
    – nafhgood
    Dec 14 '18 at 17:47






  • 2




    $begingroup$
    Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 17:50












  • $begingroup$
    The second inequality is just GM < AM with $k, n+1-k$
    $endgroup$
    – Naweed G. Seldon
    Dec 14 '18 at 17:50








  • 2




    $begingroup$
    Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
    $endgroup$
    – Mohammad Zuhair Khan
    Dec 14 '18 at 18:10
















$begingroup$
Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:46






$begingroup$
Are you interested in why $1+frac {n+1}{n^2}+frac {k(n+1-k)}{n^4} leq 1+frac 1n+frac 1{n^2}+frac {(n+1)^2}{4n^2}?$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:46














$begingroup$
yes, that is what I'm confused about
$endgroup$
– nafhgood
Dec 14 '18 at 17:47




$begingroup$
yes, that is what I'm confused about
$endgroup$
– nafhgood
Dec 14 '18 at 17:47




2




2




$begingroup$
Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:50






$begingroup$
Well, $1+frac{n+1}{n^2}=1+frac 1n+frac 1{n^2}$ so we are interested in proving that $frac {k(n+1-k)}{n^4} leq frac {(n+1)^2}{4n^2}.$ Now we get $4k(n+1-k)leq n^2(n+1)^2$
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 17:50














$begingroup$
The second inequality is just GM < AM with $k, n+1-k$
$endgroup$
– Naweed G. Seldon
Dec 14 '18 at 17:50






$begingroup$
The second inequality is just GM < AM with $k, n+1-k$
$endgroup$
– Naweed G. Seldon
Dec 14 '18 at 17:50






2




2




$begingroup$
Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 18:10




$begingroup$
Yes, that is what I meant. Sorry for the typo. Well, you can rearrange it to $k(n+1-k) leq frac {(n+1)^2}4$ and then we have $sqrt {k(n+1-k)} leq frac{n+1}2$. We can rewrite this as $sqrt {k(n+1-k)} leq frac{k+(n+1-k)}2$ and this can be proved by the AM-GM inequality by letting $k=a$ and $n+1-k=b$. According to AM-GM inequality, $frac {a+b}2 geq sqrt {ab}$. I basically paraphrased @NaweedG.Seldon .
$endgroup$
– Mohammad Zuhair Khan
Dec 14 '18 at 18:10










3 Answers
3






active

oldest

votes


















2












$begingroup$

Hint: By AM-GM Inequality
$$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$






share|cite|improve this answer









$endgroup$





















    5












    $begingroup$

    As an alternative, we have that



    $$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$



    and



    $$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$



    indeed




    • $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$

    • $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Sorry, how do you get the first equality on the second line?
      $endgroup$
      – nafhgood
      Dec 14 '18 at 18:17










    • $begingroup$
      @mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
      $endgroup$
      – gimusi
      Dec 14 '18 at 18:32












    • $begingroup$
      @mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
      $endgroup$
      – ploosu2
      Dec 14 '18 at 19:41





















    3












    $begingroup$

    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$




    $ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
    pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$
    .




    begin{align}
    &bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
    pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
    lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
    \[5mm] = &
    lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
    prod_{k = 1}^{n}n^{2}} =
    lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
    \[5mm] = &
    lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
    lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
    \[5mm] = &
    lim_{n to infty}
    {root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
    expo{-pars{n^{2} + n}} over
    n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
    lim_{n to infty}
    {pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
    expo{-n} over
    n^{2n}pars{n^{2n^{2} + 1}}}
    \[5mm] = &
    lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
    lnpars{1 + {1 over n}} - n}
    \[5mm] = &
    lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
    bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
    approx 1.6487
    end{align}




    Note that


    $ds{pars{n^{2} + n + {1 over 2}}
    lnpars{1 + {1 over n}} - n
    ,,,stackrel{mrm{as} n to infty}{sim},,,
    {1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$
    .







    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Sorry, What does $a^{overline{n}}$ mean?
      $endgroup$
      – nafhgood
      Dec 14 '18 at 22:57






    • 1




      $begingroup$
      @mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
      $endgroup$
      – Felix Marin
      Dec 15 '18 at 0:35













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039690%2flim-n-to-infty1-frac1n21-frac2n2-1-fracnn2-e-f%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Hint: By AM-GM Inequality
    $$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Hint: By AM-GM Inequality
      $$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Hint: By AM-GM Inequality
        $$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$






        share|cite|improve this answer









        $endgroup$



        Hint: By AM-GM Inequality
        $$frac{k+ n+1-k}{2} geq sqrt{k(n+1-k)}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 14 '18 at 17:52









        Naweed G. SeldonNaweed G. Seldon

        1,304419




        1,304419























            5












            $begingroup$

            As an alternative, we have that



            $$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$



            and



            $$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$



            indeed




            • $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$

            • $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Sorry, how do you get the first equality on the second line?
              $endgroup$
              – nafhgood
              Dec 14 '18 at 18:17










            • $begingroup$
              @mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
              $endgroup$
              – gimusi
              Dec 14 '18 at 18:32












            • $begingroup$
              @mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
              $endgroup$
              – ploosu2
              Dec 14 '18 at 19:41


















            5












            $begingroup$

            As an alternative, we have that



            $$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$



            and



            $$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$



            indeed




            • $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$

            • $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Sorry, how do you get the first equality on the second line?
              $endgroup$
              – nafhgood
              Dec 14 '18 at 18:17










            • $begingroup$
              @mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
              $endgroup$
              – gimusi
              Dec 14 '18 at 18:32












            • $begingroup$
              @mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
              $endgroup$
              – ploosu2
              Dec 14 '18 at 19:41
















            5












            5








            5





            $begingroup$

            As an alternative, we have that



            $$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$



            and



            $$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$



            indeed




            • $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$

            • $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$






            share|cite|improve this answer











            $endgroup$



            As an alternative, we have that



            $$left(1+frac{1}{n^2}right)left(1+frac{2}{n^2}right)ldotsleft(1+frac{n}{n^2}right)=prod_{k=1}^{n}left(1+frac{k}{n^2}right)=e^{sum_{k=1}^{n} logleft(1+frac{k}{n^2}right) }$$



            and



            $$sum_{k=1}^{n} logleft(1+frac{k}{n^2}right)=sum_{k=1}^{n}left(frac{k}{n^2}+k^2Oleft(frac{1}{n^4}right)right)=frac1{n^2}sum_{k=1}^{n}k+Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2to frac12$$



            indeed




            • $sum_{k=1}^{n}k=frac{n(n+1)}{2}implies frac1{n^2}sum_{k=1}^{n}k=frac{n(n+1)}{2n^2}to frac12$

            • $sum_{k=1}^{n}k^2=frac{n(n+1)(2n+1)}{6}implies Oleft(frac{1}{n^4}right)sum_{k=1}^{n}k^2=Oleft(frac{1}{n}right)to 0$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 15 '18 at 10:16

























            answered Dec 14 '18 at 17:56









            gimusigimusi

            92.8k84494




            92.8k84494












            • $begingroup$
              Sorry, how do you get the first equality on the second line?
              $endgroup$
              – nafhgood
              Dec 14 '18 at 18:17










            • $begingroup$
              @mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
              $endgroup$
              – gimusi
              Dec 14 '18 at 18:32












            • $begingroup$
              @mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
              $endgroup$
              – ploosu2
              Dec 14 '18 at 19:41




















            • $begingroup$
              Sorry, how do you get the first equality on the second line?
              $endgroup$
              – nafhgood
              Dec 14 '18 at 18:17










            • $begingroup$
              @mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
              $endgroup$
              – gimusi
              Dec 14 '18 at 18:32












            • $begingroup$
              @mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
              $endgroup$
              – ploosu2
              Dec 14 '18 at 19:41


















            $begingroup$
            Sorry, how do you get the first equality on the second line?
            $endgroup$
            – nafhgood
            Dec 14 '18 at 18:17




            $begingroup$
            Sorry, how do you get the first equality on the second line?
            $endgroup$
            – nafhgood
            Dec 14 '18 at 18:17












            $begingroup$
            @mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
            $endgroup$
            – gimusi
            Dec 14 '18 at 18:32






            $begingroup$
            @mathnoob We have $A=e^{log A}$ and $log prod a_i = sum log a_i$.
            $endgroup$
            – gimusi
            Dec 14 '18 at 18:32














            $begingroup$
            @mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
            $endgroup$
            – ploosu2
            Dec 14 '18 at 19:41






            $begingroup$
            @mathnoob the series for logarithm: $log(1+x) = sum_{j=1}^infty frac{(-1)^{j+1}}{j} x^j$
            $endgroup$
            – ploosu2
            Dec 14 '18 at 19:41













            3












            $begingroup$

            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
            newcommand{dd}{mathrm{d}}
            newcommand{ds}[1]{displaystyle{#1}}
            newcommand{expo}[1]{,mathrm{e}^{#1},}
            newcommand{ic}{mathrm{i}}
            newcommand{mc}[1]{mathcal{#1}}
            newcommand{mrm}[1]{mathrm{#1}}
            newcommand{pars}[1]{left(,{#1},right)}
            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
            newcommand{verts}[1]{leftvert,{#1},rightvert}$




            $ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
            pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$
            .




            begin{align}
            &bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
            pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
            lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
            \[5mm] = &
            lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
            prod_{k = 1}^{n}n^{2}} =
            lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
            \[5mm] = &
            lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
            lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
            \[5mm] = &
            lim_{n to infty}
            {root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
            expo{-pars{n^{2} + n}} over
            n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
            lim_{n to infty}
            {pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
            expo{-n} over
            n^{2n}pars{n^{2n^{2} + 1}}}
            \[5mm] = &
            lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
            lnpars{1 + {1 over n}} - n}
            \[5mm] = &
            lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
            bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
            approx 1.6487
            end{align}




            Note that


            $ds{pars{n^{2} + n + {1 over 2}}
            lnpars{1 + {1 over n}} - n
            ,,,stackrel{mrm{as} n to infty}{sim},,,
            {1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$
            .







            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Sorry, What does $a^{overline{n}}$ mean?
              $endgroup$
              – nafhgood
              Dec 14 '18 at 22:57






            • 1




              $begingroup$
              @mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
              $endgroup$
              – Felix Marin
              Dec 15 '18 at 0:35


















            3












            $begingroup$

            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
            newcommand{dd}{mathrm{d}}
            newcommand{ds}[1]{displaystyle{#1}}
            newcommand{expo}[1]{,mathrm{e}^{#1},}
            newcommand{ic}{mathrm{i}}
            newcommand{mc}[1]{mathcal{#1}}
            newcommand{mrm}[1]{mathrm{#1}}
            newcommand{pars}[1]{left(,{#1},right)}
            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
            newcommand{verts}[1]{leftvert,{#1},rightvert}$




            $ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
            pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$
            .




            begin{align}
            &bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
            pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
            lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
            \[5mm] = &
            lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
            prod_{k = 1}^{n}n^{2}} =
            lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
            \[5mm] = &
            lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
            lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
            \[5mm] = &
            lim_{n to infty}
            {root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
            expo{-pars{n^{2} + n}} over
            n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
            lim_{n to infty}
            {pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
            expo{-n} over
            n^{2n}pars{n^{2n^{2} + 1}}}
            \[5mm] = &
            lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
            lnpars{1 + {1 over n}} - n}
            \[5mm] = &
            lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
            bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
            approx 1.6487
            end{align}




            Note that


            $ds{pars{n^{2} + n + {1 over 2}}
            lnpars{1 + {1 over n}} - n
            ,,,stackrel{mrm{as} n to infty}{sim},,,
            {1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$
            .







            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Sorry, What does $a^{overline{n}}$ mean?
              $endgroup$
              – nafhgood
              Dec 14 '18 at 22:57






            • 1




              $begingroup$
              @mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
              $endgroup$
              – Felix Marin
              Dec 15 '18 at 0:35
















            3












            3








            3





            $begingroup$

            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
            newcommand{dd}{mathrm{d}}
            newcommand{ds}[1]{displaystyle{#1}}
            newcommand{expo}[1]{,mathrm{e}^{#1},}
            newcommand{ic}{mathrm{i}}
            newcommand{mc}[1]{mathcal{#1}}
            newcommand{mrm}[1]{mathrm{#1}}
            newcommand{pars}[1]{left(,{#1},right)}
            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
            newcommand{verts}[1]{leftvert,{#1},rightvert}$




            $ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
            pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$
            .




            begin{align}
            &bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
            pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
            lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
            \[5mm] = &
            lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
            prod_{k = 1}^{n}n^{2}} =
            lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
            \[5mm] = &
            lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
            lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
            \[5mm] = &
            lim_{n to infty}
            {root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
            expo{-pars{n^{2} + n}} over
            n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
            lim_{n to infty}
            {pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
            expo{-n} over
            n^{2n}pars{n^{2n^{2} + 1}}}
            \[5mm] = &
            lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
            lnpars{1 + {1 over n}} - n}
            \[5mm] = &
            lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
            bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
            approx 1.6487
            end{align}




            Note that


            $ds{pars{n^{2} + n + {1 over 2}}
            lnpars{1 + {1 over n}} - n
            ,,,stackrel{mrm{as} n to infty}{sim},,,
            {1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$
            .







            share|cite|improve this answer











            $endgroup$



            $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
            newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
            newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
            newcommand{dd}{mathrm{d}}
            newcommand{ds}[1]{displaystyle{#1}}
            newcommand{expo}[1]{,mathrm{e}^{#1},}
            newcommand{ic}{mathrm{i}}
            newcommand{mc}[1]{mathcal{#1}}
            newcommand{mrm}[1]{mathrm{#1}}
            newcommand{pars}[1]{left(,{#1},right)}
            newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
            newcommand{root}[2]{,sqrt[#1]{,{#2},},}
            newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
            newcommand{verts}[1]{leftvert,{#1},rightvert}$




            $ds{lim_{n to infty}pars{1 + {1 over n^{2}}}
            pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}} = expo{1/2}: {LARGE ?}}$
            .




            begin{align}
            &bbox[#ffd,10px]{lim_{n to infty}pars{1 + {1 over n^{2}}}
            pars{1 + {2 over n^{2}}}cdotspars{1 + {n over n^{2}}}} =
            lim_{n to infty}prod_{k = 1}^{n}pars{1 + {k over n^{2}}}
            \[5mm] = &
            lim_{n to infty}{prod_{k = 1}^{n}pars{k + n^{2}} over
            prod_{k = 1}^{n}n^{2}} =
            lim_{n to infty}{pars{1 + n^{2}}^{largeoverline{n}} over pars{n^{2}}^{n}}
            \[5mm] = &
            lim_{n to infty}{Gammapars{1 + n^{2} + n}/Gammapars{1 + n^{2}} over n^{2n}} =
            lim_{n to infty}{pars{n^{2} + n}! over n^{2n}pars{n^{2}}!}
            \[5mm] = &
            lim_{n to infty}
            {root{2pi}pars{n^{2} + n}^{n^{2} + n + 1/2},
            expo{-pars{n^{2} + n}} over
            n^{2n}bracks{root{2pi}pars{n^{2}}^{n^{2} + 1/2}expo{-n^{2}}}} \[5mm] = &
            lim_{n to infty}
            {pars{n^{2}}^{n^{2} + n + 1/2}pars{1 + 1/n}^{n^{2} + n + 1/2},
            expo{-n} over
            n^{2n}pars{n^{2n^{2} + 1}}}
            \[5mm] = &
            lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
            lnpars{1 + {1 over n}} - n}
            \[5mm] = &
            lim_{n to infty}exppars{bracks{n^{2} + n + {1 over 2}}
            bracks{{1 over n} - {1 over 2n^{2}}} - n} = bbx{expo{1/2}}
            approx 1.6487
            end{align}




            Note that


            $ds{pars{n^{2} + n + {1 over 2}}
            lnpars{1 + {1 over n}} - n
            ,,,stackrel{mrm{as} n to infty}{sim},,,
            {1 over 2} + {1 over 3n} - {1 over 6n^{2}}}$
            .








            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Dec 14 '18 at 22:09

























            answered Dec 14 '18 at 22:03









            Felix MarinFelix Marin

            68.1k7109142




            68.1k7109142












            • $begingroup$
              Sorry, What does $a^{overline{n}}$ mean?
              $endgroup$
              – nafhgood
              Dec 14 '18 at 22:57






            • 1




              $begingroup$
              @mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
              $endgroup$
              – Felix Marin
              Dec 15 '18 at 0:35




















            • $begingroup$
              Sorry, What does $a^{overline{n}}$ mean?
              $endgroup$
              – nafhgood
              Dec 14 '18 at 22:57






            • 1




              $begingroup$
              @mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
              $endgroup$
              – Felix Marin
              Dec 15 '18 at 0:35


















            $begingroup$
            Sorry, What does $a^{overline{n}}$ mean?
            $endgroup$
            – nafhgood
            Dec 14 '18 at 22:57




            $begingroup$
            Sorry, What does $a^{overline{n}}$ mean?
            $endgroup$
            – nafhgood
            Dec 14 '18 at 22:57




            1




            1




            $begingroup$
            @mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
            $endgroup$
            – Felix Marin
            Dec 15 '18 at 0:35






            $begingroup$
            @mathnoob It's the Raising Factorial. A shortcut notation for $displaystyle x^{largeoverline{n}} equiv xleft(,{x},right)left(,{x + 1},right)left(,{x + n - 1},right)$.
            $endgroup$
            – Felix Marin
            Dec 15 '18 at 0:35




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3039690%2flim-n-to-infty1-frac1n21-frac2n2-1-fracnn2-e-f%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How do I know what Microsoft account the skydrive app is syncing to?

            Grease: Live!

            When does type information flow backwards in C++?