Express $frac{d^2z}{dtheta^2}$ Polar coordinates











up vote
1
down vote

favorite












Let $(x, y)$ be Cartesian coordinates in the plane and let $(r, theta)$ be Polar coordinates. Express $frac{d^2z}{dtheta^2}$.





my attempt



$z = f(x, y)$



Note



$frac{du}{dtheta} = frac{dr}{dtheta}cos(theta) = -rsin(theta)$



$frac{dy}{dtheta} = rcos(theta)$



$frac{dz}{dtheta} = frac{df}{du}frac{du}{dtheta} + frac{df}{dy}frac{dy}{dtheta}$



$frac{dz}{dtheta} = -r frac{df}{du}sin(theta) + rfrac{df}{dy}cos(theta)$



$frac{1}{r}frac{d}{dtheta}(frac{dz}{dtheta}) = frac{d}{dtheta}(frac{df}{du})sin(theta) - cos(theta)frac{df}{du} + frac{d}{dtheta} (frac{df}{dy})cos(theta) - frac{df}{dy}sin(theta)$



$frac{1}{r}frac{d^2z}{dtheta^2} = -frac{d^2f}{dx^2}frac{dx}{dtheta}sin(theta) - frac{df}{du}cos(theta) + frac{d^2f}{dy^2}(frac{dy}{dtheta})cos(theta) - frac{df}{dy}sin(theta)$



thus,



$$frac{d^2z}{dtheta^2} = r^2sin^2(theta)frac{d^2f}{x^2} - frac{rdf}{dx}cos(theta) - r frac{df}{dy}sin(theta) + r^2 frac{d^2f}{dy^2}cos^2(theta)$$



Is this correct?










share|cite|improve this question






















  • You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
    – maxmilgram
    Nov 16 at 6:52















up vote
1
down vote

favorite












Let $(x, y)$ be Cartesian coordinates in the plane and let $(r, theta)$ be Polar coordinates. Express $frac{d^2z}{dtheta^2}$.





my attempt



$z = f(x, y)$



Note



$frac{du}{dtheta} = frac{dr}{dtheta}cos(theta) = -rsin(theta)$



$frac{dy}{dtheta} = rcos(theta)$



$frac{dz}{dtheta} = frac{df}{du}frac{du}{dtheta} + frac{df}{dy}frac{dy}{dtheta}$



$frac{dz}{dtheta} = -r frac{df}{du}sin(theta) + rfrac{df}{dy}cos(theta)$



$frac{1}{r}frac{d}{dtheta}(frac{dz}{dtheta}) = frac{d}{dtheta}(frac{df}{du})sin(theta) - cos(theta)frac{df}{du} + frac{d}{dtheta} (frac{df}{dy})cos(theta) - frac{df}{dy}sin(theta)$



$frac{1}{r}frac{d^2z}{dtheta^2} = -frac{d^2f}{dx^2}frac{dx}{dtheta}sin(theta) - frac{df}{du}cos(theta) + frac{d^2f}{dy^2}(frac{dy}{dtheta})cos(theta) - frac{df}{dy}sin(theta)$



thus,



$$frac{d^2z}{dtheta^2} = r^2sin^2(theta)frac{d^2f}{x^2} - frac{rdf}{dx}cos(theta) - r frac{df}{dy}sin(theta) + r^2 frac{d^2f}{dy^2}cos^2(theta)$$



Is this correct?










share|cite|improve this question






















  • You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
    – maxmilgram
    Nov 16 at 6:52













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $(x, y)$ be Cartesian coordinates in the plane and let $(r, theta)$ be Polar coordinates. Express $frac{d^2z}{dtheta^2}$.





my attempt



$z = f(x, y)$



Note



$frac{du}{dtheta} = frac{dr}{dtheta}cos(theta) = -rsin(theta)$



$frac{dy}{dtheta} = rcos(theta)$



$frac{dz}{dtheta} = frac{df}{du}frac{du}{dtheta} + frac{df}{dy}frac{dy}{dtheta}$



$frac{dz}{dtheta} = -r frac{df}{du}sin(theta) + rfrac{df}{dy}cos(theta)$



$frac{1}{r}frac{d}{dtheta}(frac{dz}{dtheta}) = frac{d}{dtheta}(frac{df}{du})sin(theta) - cos(theta)frac{df}{du} + frac{d}{dtheta} (frac{df}{dy})cos(theta) - frac{df}{dy}sin(theta)$



$frac{1}{r}frac{d^2z}{dtheta^2} = -frac{d^2f}{dx^2}frac{dx}{dtheta}sin(theta) - frac{df}{du}cos(theta) + frac{d^2f}{dy^2}(frac{dy}{dtheta})cos(theta) - frac{df}{dy}sin(theta)$



thus,



$$frac{d^2z}{dtheta^2} = r^2sin^2(theta)frac{d^2f}{x^2} - frac{rdf}{dx}cos(theta) - r frac{df}{dy}sin(theta) + r^2 frac{d^2f}{dy^2}cos^2(theta)$$



Is this correct?










share|cite|improve this question













Let $(x, y)$ be Cartesian coordinates in the plane and let $(r, theta)$ be Polar coordinates. Express $frac{d^2z}{dtheta^2}$.





my attempt



$z = f(x, y)$



Note



$frac{du}{dtheta} = frac{dr}{dtheta}cos(theta) = -rsin(theta)$



$frac{dy}{dtheta} = rcos(theta)$



$frac{dz}{dtheta} = frac{df}{du}frac{du}{dtheta} + frac{df}{dy}frac{dy}{dtheta}$



$frac{dz}{dtheta} = -r frac{df}{du}sin(theta) + rfrac{df}{dy}cos(theta)$



$frac{1}{r}frac{d}{dtheta}(frac{dz}{dtheta}) = frac{d}{dtheta}(frac{df}{du})sin(theta) - cos(theta)frac{df}{du} + frac{d}{dtheta} (frac{df}{dy})cos(theta) - frac{df}{dy}sin(theta)$



$frac{1}{r}frac{d^2z}{dtheta^2} = -frac{d^2f}{dx^2}frac{dx}{dtheta}sin(theta) - frac{df}{du}cos(theta) + frac{d^2f}{dy^2}(frac{dy}{dtheta})cos(theta) - frac{df}{dy}sin(theta)$



thus,



$$frac{d^2z}{dtheta^2} = r^2sin^2(theta)frac{d^2f}{x^2} - frac{rdf}{dx}cos(theta) - r frac{df}{dy}sin(theta) + r^2 frac{d^2f}{dy^2}cos^2(theta)$$



Is this correct?







multivariable-calculus






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 16 at 2:04









Tree Garen

35019




35019












  • You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
    – maxmilgram
    Nov 16 at 6:52


















  • You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
    – maxmilgram
    Nov 16 at 6:52
















You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
– maxmilgram
Nov 16 at 6:52




You almost have it. You missed the mixed partial derivatives of the form $frac{partial^2 f}{partial xpartial y}$ in the calculation.
– maxmilgram
Nov 16 at 6:52










3 Answers
3






active

oldest

votes

















up vote
1
down vote



accepted










I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.



$$z=f(x,y)$$
$$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$



$$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$



$$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$



$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$



$x=rcos{theta}$



$y=rsin{theta}$



$dx/dtheta=-rsin{theta}$



$dy/dtheta= r cos{theta}$



$$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$






share|cite|improve this answer




























    up vote
    0
    down vote













    In my mind, the bulletproof way to calculate differential operators of transformations is the following:




    1. Write down the equality of the transformation:


    $$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$




    1. Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'


    $$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
    $$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$






    share|cite|improve this answer




























      up vote
      0
      down vote













      I thought of a vector approach.



      $z=f(x,y)$, find $d^2z/dtheta^2$.



      $frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$



      $frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$



      We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$



      So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$



      This can be simplified some. By vector identity, $nabla times nabla f =0.$



      So:



      $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$



      $frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$



      $nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$






      share|cite|improve this answer























        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














         

        draft saved


        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000615%2fexpress-fracd2zd-theta2-polar-coordinates%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        1
        down vote



        accepted










        I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.



        $$z=f(x,y)$$
        $$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$



        $$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$



        $$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$



        $$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$



        $x=rcos{theta}$



        $y=rsin{theta}$



        $dx/dtheta=-rsin{theta}$



        $dy/dtheta= r cos{theta}$



        $$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$






        share|cite|improve this answer

























          up vote
          1
          down vote



          accepted










          I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.



          $$z=f(x,y)$$
          $$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$



          $$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$



          $$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$



          $$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$



          $x=rcos{theta}$



          $y=rsin{theta}$



          $dx/dtheta=-rsin{theta}$



          $dy/dtheta= r cos{theta}$



          $$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$






          share|cite|improve this answer























            up vote
            1
            down vote



            accepted







            up vote
            1
            down vote



            accepted






            I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.



            $$z=f(x,y)$$
            $$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$



            $$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$



            $$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$



            $$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$



            $x=rcos{theta}$



            $y=rsin{theta}$



            $dx/dtheta=-rsin{theta}$



            $dy/dtheta= r cos{theta}$



            $$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$






            share|cite|improve this answer












            I think I have something. Was careful to apply the chain rule to terms like $frac{d}{dtheta}(frac{partial f}{partial x})$. This results in the second partial derivatives appearing in the below.



            $$z=f(x,y)$$
            $$dz/dtheta=frac{partial f}{partial x}frac{dx}{dtheta}+frac{partial f}{partial y}frac{dy}{dtheta}$$



            $$frac{d^2z}{dtheta^2}=frac{d}{dtheta}(frac{partial f}{partial x})frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{d}{dtheta}(frac{partial f}{partial y})frac{dy}{dtheta}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}$$



            $$frac{d^2z}{dtheta^2}=(frac{partial^2f}{partial x^2}frac{dx}{dtheta}+frac{partial ^2f}{partial xpartial y}frac{dy}{dtheta})(frac{dx}{dtheta})+frac{partial f}{partial x}frac{d^2x}{dtheta ^2}+frac{partial f}{partial y}frac{d^2y}{dtheta^2}+(frac{partial^2 f}{partial ypartial x}frac{dx}{dtheta}+frac{partial ^2f}{partial y^2}frac{dy}{dtheta})frac{dy}{dtheta}$$



            $$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(frac{dx}{dtheta})^2+2frac{partial ^2 f}{partial x partial y}frac{dy}{dtheta}frac{dx}{dtheta}+frac{partial f}{partial x}frac{d^2x}{dtheta^2}+frac{partial f}{partial y}frac{d^2y}{dtheta ^2}+frac{partial ^2 f}{partial y^2}(frac{dy}{dtheta})^2$$



            $x=rcos{theta}$



            $y=rsin{theta}$



            $dx/dtheta=-rsin{theta}$



            $dy/dtheta= r cos{theta}$



            $$frac{d^2z}{dtheta^2}=(frac{partial ^2f}{partial x^2})(r^2sin^2{theta})+2frac{partial ^2f}{partial x partial y}(-r^2sin{theta}cos{theta})+frac{partial f}{partial x}(-rcos{theta})+frac{partial f}{partial y}(-rsin{theta})+frac{partial ^2f}{partial y^2}(r^2cos^2{theta})$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 16 at 6:13









            TurlocTheRed

            768210




            768210






















                up vote
                0
                down vote













                In my mind, the bulletproof way to calculate differential operators of transformations is the following:




                1. Write down the equality of the transformation:


                $$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$




                1. Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'


                $$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
                $$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$






                share|cite|improve this answer

























                  up vote
                  0
                  down vote













                  In my mind, the bulletproof way to calculate differential operators of transformations is the following:




                  1. Write down the equality of the transformation:


                  $$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$




                  1. Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'


                  $$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
                  $$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$






                  share|cite|improve this answer























                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    In my mind, the bulletproof way to calculate differential operators of transformations is the following:




                    1. Write down the equality of the transformation:


                    $$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$




                    1. Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'


                    $$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
                    $$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$






                    share|cite|improve this answer












                    In my mind, the bulletproof way to calculate differential operators of transformations is the following:




                    1. Write down the equality of the transformation:


                    $$z(r,varphi)=f(rcos(varphi),rsin(varphi))$$




                    1. Now you can simply differentiate twice and need not to worry about forgetting anything because nothing is 'hidden'


                    $$frac{partial z}{partialvarphi}=f_x(rcos(varphi),rsin(varphi))(-rsin(varphi))+f_y(rcos(varphi),rsin(varphi))(rcos(varphi))$$
                    $$frac{partial^2 z}{partialvarphi^2}=f_{xx}(rcos(varphi),rsin(varphi))(-rsin(varphi))^2-2f_{xy}(rcos(varphi),rsin(varphi))r^2sin(varphi)cos(varphi)-f_x(rcos(varphi),rsin(varphi))(rcos(varphi))+f_{yy}(rcos(varphi),rsin(varphi))(rcos(varphi))^2-f_y(rcos(varphi),rsin(varphi))(rsin(varphi))$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Nov 16 at 6:49









                    maxmilgram

                    4227




                    4227






















                        up vote
                        0
                        down vote













                        I thought of a vector approach.



                        $z=f(x,y)$, find $d^2z/dtheta^2$.



                        $frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$



                        $frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$



                        We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$



                        So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$



                        This can be simplified some. By vector identity, $nabla times nabla f =0.$



                        So:



                        $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$



                        $frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$



                        $nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$






                        share|cite|improve this answer



























                          up vote
                          0
                          down vote













                          I thought of a vector approach.



                          $z=f(x,y)$, find $d^2z/dtheta^2$.



                          $frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$



                          $frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$



                          We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$



                          So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$



                          This can be simplified some. By vector identity, $nabla times nabla f =0.$



                          So:



                          $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$



                          $frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$



                          $nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$






                          share|cite|improve this answer

























                            up vote
                            0
                            down vote










                            up vote
                            0
                            down vote









                            I thought of a vector approach.



                            $z=f(x,y)$, find $d^2z/dtheta^2$.



                            $frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$



                            $frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$



                            We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$



                            So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$



                            This can be simplified some. By vector identity, $nabla times nabla f =0.$



                            So:



                            $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$



                            $frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$



                            $nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$






                            share|cite|improve this answer














                            I thought of a vector approach.



                            $z=f(x,y)$, find $d^2z/dtheta^2$.



                            $frac{df}{dtheta}=nabla fcdot frac{dvec{s}}{dtheta}$



                            $frac{d^2f}{dtheta^2}=nabla(nabla fcdot frac{dvec{s}}{dtheta})cdot frac{dvec{s}}{dtheta}$



                            We have the identity: $nabla(vec{A}cdot vec{B})=(vec{A}cdot nabla)vec{B}+(vec{B}cdot nabla)vec{A}+vec{A}times(nabla times vec{B})+vec{B}times(nabla times vec{A})$



                            So: $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})+frac{dvec{s}}{dtheta}times(nabla times nabla f) ]$



                            This can be simplified some. By vector identity, $nabla times nabla f =0.$



                            So:



                            $frac{d^2f}{dtheta^2}=frac{dvec{s}}{dtheta}cdot [ (nabla fcdot nabla)frac{dvec{s}}{dtheta}+(frac{dvec{s}}{dtheta}cdot nabla)nabla f+nabla ftimes(nabla times frac{dvec{s}}{dtheta})]$



                            $frac{dvec{s}}{dtheta}=<-rsin{(theta)}, rcos{(theta),0}>=<-y,x,0>$



                            $nabla timesfrac{dvec{s}}{d theta}=<0,0,2>$







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited Nov 18 at 7:42

























                            answered Nov 18 at 5:32









                            TurlocTheRed

                            768210




                            768210






























                                 

                                draft saved


                                draft discarded



















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3000615%2fexpress-fracd2zd-theta2-polar-coordinates%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How do I know what Microsoft account the skydrive app is syncing to?

                                Grease: Live!

                                When does type information flow backwards in C++?